Revista de Odontologia da UNESP
https://revodontolunesp.com.br/journal/rou/article/doi/10.1590/1807-2577.1049
Revista de Odontologia da UNESP
Original Article

Surface roughness and hardness of yttria stabilized zirconia (Y-TZP) aft er 10 years of simulated brushing

Avaliação da rugosidade e dureza da zircônia Y-TZP após simulação de 10 anos de escovação

Candido, Lucas Miguel; Fais, Laiza Maria Grassi; Reis, José Mauricio dos Santos Nunes; Pinelli, Lígia Antunes Pereira

Downloads: 1
Views: 497

Abstract

Introduction: The Y-TZP zirconia used for prosthetic infrastructure, in some clinical situations, can be exposed to the oral environment. In these situations, a polished surface without changes is extremely important. Objective: The aim of this study was to evaluate the mean roughness (Ra) and Vickers hardness of Y-TZP zirconia (LavaTM) after simulating ten years of brushing. Material and method: Thirty-six Y-TZP bar-shaped specimens (20mm X 4mm X 1.2mm) were divided into three groups: storage in distilled water (DW, n=12, control); brushing with distilled water (BDW, n=12) and brushing with distilled water and fluoride toothpaste (BFT, n=12). Brushing was performed using a brushing machine with a soft-bristled toothbrush, simulating 10 years of brushing (878.400 cycles, 100gf). The mean roughness (Ra in μm) and Vickers hardness (VHN) of all specimens were measured twice: before and after the experimental treatment, in profilometer and microhardness tester (500gf, 30 seconds), respectively. Data were analyzed using the two-way ANOVA test (α = 0.05). Result: The interaction between groups was not significant for roughness (p = 0.701) nor for hardness (p = 0.928). The final averages for Ra (μm) were equal to: DW – 0.63; BDW – 0.64; and, BFT – 0.68. The final averages for Vickers hardness (VHN) were: DW – 1301.16; BDW – 1316.60; and, BFT – 1299.58. Conclusion: It was concluded that the brushing with distilled or fluoridated toothpaste was not able to change the roughness and hardness of Y-TZP zirconia used in this study.

Keywords

Hardness, toothbrushing, ceramics

Resumo

Introdução: A zircônia estabilizada por ítria (Y-TZP) utilizada para infraestruturas protéticas pode, em algumas situações clínicas, ficar exposta ao meio bucal, e nessas situações, uma superfície sem alterações e polida é extremamente importante. Objetivo: Assim, este estudo avaliou a rugosidade média (Ra) e a dureza Vickers da zircônia LavaTM após simulação de dez anos de escovação. Material e método: Foram confeccionados 36 espécimes (20mm X 4mm X 1,2mm), divididos em três grupos: armazenamento em água destilada (AD, n=12, controle), escovação com água destilada (EAD, n=12) e escovação com água destilada e dentifrício fluoretado (EDF, n=12). A escovação foi realizada em máquina de escovação simulando 10 anos (878.400 ciclos, 100gf) com escova dental macia. A rugosidade média (Ra, em μm) e a dureza Vickers (VHN) de todos os corpos-de-prova foram mensuradas em dois momentos: antes e após o tratamento experimental, em rugosímetro e microdurômetro (500gf, 30 segundos), respectivamente. Os dados foram analisados por meio do teste two-way ANOVA (α=0,05). Resultado: A interação entre os grupos não foi significativa tanto para a rugosidade (p=0,701) quanto para a dureza (p=0,928), sendo as médias finais de Ra (μm) iguais a: AD - 0,63; EAD - 0,64 e EDF - 0,68 e as de dureza Vickers (VHN) iguais a: AD - 1301,16; EAD - 1316,60 e EDF - 1299,58. Conclusão: Concluiu-se que o procedimento de escovação com água destilada ou com dentifrício fluoretado não foi capaz de alterar a rugosidade e a dureza da zircônia Y-TZP utilizada neste estudo.

Palavras-chave

Dureza, escovação dentária, cerâmica

References

 


1. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials. 1999 Jan; 20(1): 1-25. http://dx.doi.org/10.1016/S0142- 9612(98)00010-6. PMid:9916767

2. Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater. 2008 Mar; 24(3): 299-307. http://dx.doi.org/10.1016/j. dental.2007.05.007. PMid:17659331

3. Vagkopoulou T, Koutayas SO, Koidis P, Strub JR. Zirconia in dentistry: Part 1. Discovering the nature of an upcoming bioceramic. Eur J Esthet Dent. 2009; 4(2): 130-51. PMid:19655651.

4. Studart AR, Filser F, Kocher P, Lüthy H, Gauckler LJ. Cyclic fatigue in water of veneer-framework composites for all-ceramic dental bridges. Dent Mater. 2007 Feb; 23(2): 177-85. http://dx.doi.org/10.1016/j.dental.2006.01.011. PMid:16492388

5. Roy ME, Whiteside LA, Katerberg BJ, Steiger JA. Phase transformation, roughness, and microhardness of artificially aged yttria- and magnesia-stabilized zirconia femoral heads. J Biomed Mater Res A. 2007 Dec; 83A(4): 1096-102. http://dx.doi.org/10.1002/jbm.a.31438. PMid:17584902

6. Demir N, Subaşi MG, Ozturk AN. Surface roughness and morphologic changes of zirconia following different surface treatments. Photomed Laser Surg. 2012 June; 30(6): 339-45. http://dx.doi.org/10.1089/pho.2011.3213. PMid:22554050

7. Kantorski KZ, Valandro LF, Scotti R, Della Bona A, Bottino MA.Surface roughness of glazed feldspar, alumina, and zirconia-based ceramics. Cienc Odontol Bras. 2006 Out-Dez; 9(4):12-7.

8. Luangruangrong P, Cook NB, Sabrah AH, Hara AT, Bottino MC. Influence of full-contour zirconia surface roughness on wear of glassceramics. J Prosthodont. 2014 Apr; 23(3): 198-205. http://dx.doi.org/10.1111/jopr.12088. PMid:23875963

9. Chevalier J. What future for zirconia as a biomaterial? Biomaterials. 2006 Feb; 27(4): 535-43. http://dx.doi.org/10.1016/j. biomaterials.2005.07.034. PMid:16143387

10. Cattani-Lorente M, Scherrer SS, Ammann P, Jobin M, Wiskott HW. Low temperature degradation of a Y-TZP dental ceramic. Acta Biomater. 2011 Feb; 7(2): 858-65. http://dx.doi.org/10.1016/j.actbio.2010.09.020. PMid:20854937

11. Kawai Y, Uo M, Wang Y, Kono S, Ohnuki S, Watari F. Phase transformation of zirconia ceramics by hydrothermal degradation. Dent Mater J. 2011; 30(3): 286-92. http://dx.doi.org/10.4012/dmj.2010-175. PMid:21597215

12. Catledge SA, Cook M, Vohra YK, Santos EM, McClenny MD, David Moore K. Surface crystalline phases and nanoindentation hardness of explanted zirconia femoral heads. J Mater Sci Mater Med. 2003 Oct; 14(10): 863-7. http://dx.doi.org/10.1023/A:1025678525474. PMid:15348523

13. Alghazzawi TF, Lemons J, Liu PR, Essig ME, Bartolucci AA, Janowski GM. Influence of low-temperature environmental exposure on the mechanical properties and structural stability of dental zirconia. J Prosthodont. 2012 July; 21(5): 363-9. http://dx.doi.org/10.1111/j.1532- 849X.2011.00838.x. PMid:22372432

14. Fais LM, Fernandes-Filho RB, Pereira-da-Silva MA, Vaz LG, Adabo GL. Titanium surface topography after brushing with fluoride and fluoride-free toothpaste simulating 10 years of use. J Dent. 2012 Apr; 40(4): 265-75. http://dx.doi.org/10.1016/j.jdent.2012.01.001. PMid:22265989

15. Scotti R, Kantorski KZ, Monaco C, Valandro LF, Ciocca L, Bottino MA. SEM evaluation of in situ early bacterial colonization on a Y-TZP ceramic: a pilot study. Int J Prosthodont. 2007 July-Aug; 20(4): 419-22. PMid:17695877.

16. Kim JW, Covel NS, Guess PC, Rekow ED, Zhang Y. Concerns of hydrothermal degradation in CAD/CAM zirconia. J Dent Res. 2010 Jan; 89(1): 91-5. http://dx.doi.org/10.1177/0022034509354193. PMid:19966039

17. Mukaeda LE, Taguchi SP, Robin A, Izario HJ, Salazar RFS, Santos C. Degradation of Y2O3-stabilized ZrO2 ceramics in artificial saliva: ICP analysis of dissolved Y3+ and Zr4+ions. Mater Sci Forum. 2012; 727-8(3): 1136-41. http://dx.doi.org/10.4028/www.scientific.net/MSF.727- 728.1136

18. Turp V, Tuncelli B, Sen D, Goller G. Evaluation of hardness and fracture toughness, coupled with microstructural analysis, of zirconia ceramics stored in environments with different pH values. Dent Mater J. 2012; 31(6): 891-902. http://dx.doi.org/10.4012/dmj.2012-005. PMid:23207192

19. Papanagiotou HP, Morgano SM, Giordano RA, Pober R. In vitro evaluation of low-temperature aging effects and finishing procedures on the flexural strength and structural stability of Y-TZP dental ceramics. J Prosthet Dent. 2006 Sept; 96(3): 154-64. http://dx.doi.org/10.1016/j. prosdent.2006.08.004. PMid:16990068

20. Swain MV. Impact of oral fluids on dental ceramics: what is the clinical relevance? Dent Mater. 2014 Jan; 30(1): 33-42. http://dx.doi. org/10.1016/j.dental.2013.08.199. PMid:24113129

21. Subramani K, Jung RE, Molenberg A, Hammerle CH. Biofilm on dental implants: a review of the literature. Int J Oral Maxillofac Implants. 2009 July-Aug; 24(4): 616-26. PMid:19885401.

22. Janyavula S, Lawson N, Cakir D, Beck P, Ramp LC, Burgess JO. The wear of polished and glazed zirconia against enamel. J Prosthet Dent. 2013 Jan; 109(1): 22-9. http://dx.doi.org/10.1016/S0022-3913(13)60005-0. PMid:23328193

23. Lughi V, Sergo V. Low temperature degradation -aging- of zirconia: A critical review of the relevant aspects in dentistry. Dent Mater. 2010 Aug; 26(8): 807-20. http://dx.doi.org/10.1016/j.dental.2010.04.006. PMid:20537701

24. Camargo IM, Saiki M, Vasconcellos MB, Avila DM. Abrasiveness evaluation of silica and calcium carbonate used in the production of dentifrices. J Cosmet Sci. 2001 May-June; 52(3): 163-7. PMid:11413496.

25. Johannsen G, Tellefsen G, Johannsen A, Liljeborg A. The importance of measuring toothpaste abrasivity in both a quantitative and qualitative way. Acta Odontol Scand. 2013 May-July; 71(3-4): 508-17. http://dx.doi.org/10.3109/00016357.2012.696693. PMid:22746180

 

588019cc7f8c9d0a098b5348 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections