Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/doi/10.1590/rou.2014.038
Revista de Odontologia da UNESP
Original Article

Effect of chlorhexidine gluconate on porosity and compressive strength of a glass ionomer cement

Efeito da adição de gluconato de clorexidina na porosidade e resistência à compressão de um cimento de ionômero de vidro

Marti, Luana Mafra; Azevedo, Elcilaine Rizzato; Mata, Margareth da; Giro, Elisa Maria Apda.; Zuanon, Ângela Cristina Cilense

Downloads: 0
Views: 725

Abstract

Introduction: For presenting wide antibacterial activity, chlorhexidine (CHX) has been extensively used in dentistry and can be easily incorporated into the glass ionomer cement (GIC) and consequently released into the oral cavity. Aim: The aim of this study was porosity and compression strength of a GIC, that was added to different concentrations of CHX. Material and method: Specimens were prepared with GIC (Ketac Molar Esaymix) and divided into 4 groups according to the concentration of CHX: control, 0.5% and 1% and 2% (n = 10). For analysis of pores specimens were fractured with the aid of hammer and chisel surgical, so that the fracture was performed in the center of the specimens, dividing it in half and images were obtained from a scanning electron microscope (SEM) analyzed in Image J software. The compressive strength test was conducted in a mechanical testing machine (EMIC - Equipment and Testing Systems Ltd., Joseph of the Pines, PR, Brazil). Statistical analysis was performed by ANOVA, Tukey test. Significance level of 5%. Result: No statistically significant changes between the study groups was observed both for the number of pores as well as for the compressive strength. Conclusion: The use of GIC associated with CHX gluconate 1% and 2% is the best option to be used in dental practice.

Keywords

Glass ionomer cements, chlorhexidine, porosity

Resumo

Introdução: Por apresentar ampla atividade antibacteriana, a clorexidina (CHX) tem sido amplamente utilizada em odontologia, podendo ser facilmente incorporada ao cimento de ionômero de vidro (CIV) e liberada consequentemente na cavidade bucal. Objetivo: O objetivo neste estudo foi avaliar a porosidade e resistência à compressão de um CIV, ao qual foi adicionado diferentes concentrações de CHX. Material e método: Os espécimes foram preparados com CIV (Ketac Molar Esaymix) e divididos em 4 grupos de acordo com a concentração de CHX: controle, 0,5% e 1% e 2% (n=10). Para análise dos poros os espécimes foram fraturados com auxílio de martelo e cinzel cirúrgicos, de modo que a fratura era realizada no centro do corpo de prova, dividindo-o ao meio e as imagens obtidas no microscópio eletrônico de varredura (MEV) analisadas no software Image J. O teste de resistência à compressão foi realizado na máquina de ensaios mecânicos (EMIC - Equipamentos e Sistemas de Ensaios Ltda, São José dos Pinhais, PR, Brazil). A análise estatística foi realizada por ANOVA, complementada pelo teste de Tukey. Nível de significância adotado de 5%. Resultado: Não se observou alteração estatisticamente significante entre os grupos estudados tanto para o número de poros quanto para a resistência à compressão. Conclusão: O uso de CIV associado ao gluconato de CLX a 1% e 2% é a melhor opção para ser utilizada na clínica odontológica.

Palavras-chave

Cimentos de ionômeros de vidro, clorexidina, porosidade

References

 


1. Mhaville R, Van Amerongen WE, Mandari G. Residual caries and marginal integrity in relation to Class II glass ionomer restorations in primary molars. Eur Arch Paediatr Dent. 2006; 7: 81-4. PMid:17140532. http://dx.doi.org/10.1007/BF03320819

2. Pellegrinetti MB, Imparato JCP, Bressan MC, Pinheiro SL, Echeverria SR. Avaliação da retenção do cimento de ionômero de vidro em cavidades atípicas restauradas pela técnica restauradora atraumática. Pesqui Bras Odontopediatria Integr. 2005; 5: 209.

3. Türkün LSB, Türkün M, ErtugruL F, Mustafa A, Brugger S. Long-term antibacterial effects and physical properties of a chlorhexidinecontaining glass ionomer cement. J Esthet Restor Dent. 2008; 20: 29–45. PMid:18237338. http://dx.doi.org/10.1111/j.1708- 8240.2008.00146.x

4. Maltz M, Oliveira E, Fontanella V, Bianchi R. A clinical, microbiologic, and radiographic study of deep caries lesions after incomplete caries removal. Quintessence Int. 2002; 33: 151-9. PMid:11890029.

5. Palmer G, Jones FH, Billington RW, Pearson GJ. Chlorhexidine release from an experimental glass ionomer cement. Biomaterials. 2004; 25: 5423-31. PMid:15130727. http://dx.doi.org/10.1016/j.biomaterials.2003.12.051

6. Emilson CG. Susceptibility of various microorganisms to chlorhexidine. Scand J Dent Res. 1977; 85: 255–65. PMid:266752.

7. Jedrychowski J, Caputo A, Kerper S. Antibacterial and mechanical properties of restorative materials combined with chlorhexidines. J Oral Rehabil. 1983; 10: 373-81. PMid:6355413. http://dx.doi.org/10.1111/j.1365-2842.1983.tb00133.x

8. Pucher JJ, Daniel JC. The effects of chlorhexidine digluconate on human fibroblasts in vitro. J Periodontol. 1992; 63: 526-32. PMid:1625152. http://dx.doi.org/10.1902/jop.1992.63.6.526

9. Takahashi Y, Imazato S, Kaneshiro AV, Ebisu S, Frencken JE, Tay FR. Antibacterial effects and physical properties of glass-ionomer cements containing chlorhexidine for the ART approach. Dent Mater. 2006; 22: 647–52. PMid:16226806. http://dx.doi.org/10.1016/j. dental.2005.08.003

10. Xie D, Brantley WA, Culbertson BM, Wang G. Mechanical properties and microstructures of glass-ionomer cements. Dent Mater. 2000; 16: 129-38. http://dx.doi.org/10.1016/S0109-5641(99)00093-7

11. Botelho MG. Inhibitory effects on selected oral bacteria of antibacterial agents incorporated in a glass ionomer cement. Caries Res. 2003; 7: 108–14. http://dx.doi.org/10.1159/000069019

12. Hoszek A, Ericson D. In vitro fluoride release and the antibacterial effect of glass ionomers containing chlorhexidine gluconate. Oper Dent. 2008; 33: 696-701. PMid:19051864. http://dx.doi.org/10.2341/08-20

13. Ribeiro J e Ericson D. In vitro antibacterial effect of chlorhexidine added to glass-ionomer cements. Scand J Dent Res. 1991; 99: 533-40. PMid:1763290.

14. Sanders BJ, Gregory RL, Moore K, Avery DR. Antibacterial and physical properties of resin modified glass-ionomers combined with chlorhexidine. J Oral Rehabil. 2002; 29: 553–8. PMid:12071924. http://dx.doi.org/10.1046/j.1365-2842.2002.00876.x

15. Coldebella CR, Santos-Pinto L, Zuanon AC. Effect of ultrasonic excitation on the porosity of glass ionomer cement: A scanning electron microscope evaluation. Microsc Res Tech. 2011; 74: 54–7. PMid:21181710. http://dx.doi.org/10.1002/jemt.20873

16. da Mata M, Santos-Pinto L, Zuanon ACC. Influences of the insertion method in glass ionomer cement porosity. Microsc Res Tech. 2012; 75: 667–70. PMid:22298315. http://dx.doi.org/10.1002/jemt.21109

17. Mallmann A, Ataíde JCO, Amoedo R, Rocha PV, Jacques LB. Compressive strength of glass ionomer cements using different specimen dimensions. Braz Oral Res. 2007; 21: 204-8. PMid:17710284. http://dx.doi.org/10.1590/S1806-83242007000300003

18. Naasan MA, Watson TF. Conventional glass ionomers as posterior restorations: a status report for the American Journal of Dentistry. Am J Dent. 1998; 11: 36-45. PMid:9823085.

19. Mitchell CA, Douglas WH. Comparison of the porosity of handmixed and capsulated glass-ionomer luting cements. Biomaterials. 1997; 18: 1127–31. http://dx.doi.org/10.1016/S0142-9612(97)00038-0

20. Arcoria CJ, Butler JR, Wagner MJ, Vitasek BA. Bending strength of Fuji and Ketac glass ionomers after sonication. J Oral Rehabil. 1992; 19: 607–13. PMid:1469496. http://dx.doi.org/10.1111/j.1365-2842.1992.tb01490.x

21. Nomoto R, McCabe JF. Effect of mixing methods on the compressive strength of glass ionomer cements. J Dent. 2001; 29: 205–10. http:// dx.doi.org/10.1016/S0300-5712(01)00010-0

22. Geirsson J, Thompson JY, Bayne SC. Porosity evaluation and pore size distribution of a novel directly placed ceramic restorative material. Dent Mater. 2004; 20: 987–95. PMid:15501328. http://dx.doi.org/10.1016/j.dental.2004.07.003

23. Farret MM, Lima EM, Mota EG, Hugo MS, Oshima HMS, Barth V, de Oliveira SD. Can we add chlorhexidine into glass ionomer cements for band cementation? Angle Orthod. 2011; 81: 498-502. PMid:21299380. http://dx.doi.org/10.2319/090310-518.1

24. Frencken JE, Makoni F, Sithole WD. ART restorations and glass ionomer sealants in Zimbabwe: Survival after 3 years. Community Dent Oral Epidemiol. 1998; 26: 372–81. PMid:9870536. http://dx.doi.org/10.1111/j.1600-0528.1998.tb01975.x

25. Frencken JE, Imazato S, Toi C, Mulder J, Mickenautsch S, Takahashi Y, Ebisu S. Antibacterial effect of chlorhexidine-containing glass ionomer cement in vivo: a pilot study. Caries Res. 2007; 41: 102-07. PMid:17284910. http://dx.doi.org/10.1159/000098042

26. Nomoto R, Komoriyama M, McCabe JF, Hirano S. Effect of mixing method on the porosity of encapsulated glass ionomer cement. Dent Mater. 2004; 20: 972–78. PMid:15501326. http://dx.doi.org/10.1016/j.dental.2004.03.001

27. Fleming GJ, Kenny SM, Barralet JE. The optimisation of the initial viscosity of an encapsulated glass-ionomer restorative following different mechanical mixing regimes. J Dent. 2006; 34: 155–63. PMid:16085350. http://dx.doi.org/10.1016/j.jdent.2005.05.008

 

5880196b7f8c9d0a098b5135 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections