Influence of the addition of chlorhexidine diacetate on bond strength of a high-viscosity glass ionomer cement to sound and artificial caries-affected dentin
Influência da adição do diacetato de clorexidina na resistência de união de um cimento de ionômero de vidro de alta viscosidade à dentina sadia e afetada por cárie artificial
Becci, A.C.; Marti, Luana Mafra; Zuanon, Ângela Cristina Cilense; Brighenti, Fernanda Lourenção; Spolidório, D. M. P.; Giro, Elisa Maria Apda.
Abstract
Introduction: The aim of adding chlorhexidine (CHX) to glass ionomer cements (GIC) is to improve their antibacterial property, but it may interfere with their bond to dentin. Objective: To evaluate the influence of adding chlorhexidine diacetate at different concentrations to a high-viscosity GIC on its bond to sound and artificial caries-affected dentin. Material and method: Eighty human third molars were used, on which an area of dentin was exposed on the occlusal surface. Half of the specimens were kept sound and the other half were subjected to artificially induced caries. CHX was mixed with GIC powder at 0.5%, 1% and 2% (w/w). GIC without CHX was used as control. On each dentin surface a specimen measuring 1 mm in diameter and 1 mm high was made. The samples were kept at 37 °C and 100% humidity for 24 hours and subject to microshear testing. The results were analyzed using Kruskal-Wallis and Mann Whitney tests (α=0.05). Result: There was no significant difference between bond strength of sound and caries-affected dentin (p>0.05). For both substrate conditions, groups GIC, GIC+0.5% CHX and GIC+1% CHX showed statistically similar bond strength (p>0.05), and higher than that of GIC+2% CHX (p≤0.025). Cohesive and mixed failures were predominant in all groups. Conclusion: The addition of 0.5% and 1% chlorhexidine did not result in negative changes in the bond strength of GIC to caries-affected and sound dentin.
Keywords
Resumo
Introdução: A adição da clorexidina (CLX) ao cimento de ionômero de vidro (CIV) visa melhorar a sua propriedade antibacteriana, podendo contudo interferir na adesão à dentina. Objetivo: Avaliar a influência da adição de diacetato de CLX em diferentes concentrações a um CIV de alta viscosidade, na sua adesão à dentina sadia e afetada por cárie artificial. Material e método: Foram utilizados 80 terceiros molares, que tiveram a superfície de dentina exposta na face oclusal. Metade dos dentes foram mantidos hígidos e a outra metade foi submetida à indução artificial de cárie. A CLX foi misturada ao pó do CIV nas concentrações de 0,5%, 1% e 2%. O CIV sem CLX foi usado como controle. Em cada superfície dentinária foi confeccionado um espécime com 1 mm de diâmetro e 1 mm de altura. Estes foram mantidos a 37 °C com 100% de umidade por 24 horas, e, submetidos ao teste de microcisalhamento. Os resultados foram analisados pelos testes de Kruskal-Wallis e Mann Whitney (α=0,05). Resultado: Não houve diferença estatística entre os valores de resistência de união para dentina hígida e afetada (p>0,05). Para as duas condições do substrato, os grupos CIV, CIV+CLX 0,5% e CIV+CLX 1% apresentaram resistência de união estatisticamente semelhante (p>0,05), e superior ao CIV+CLX 2% (p≤0,025). Houve predominância de fraturas mistas e coesivas do material para todos os grupos. Conclusão: A adição de CLX nas concentrações de 0,5% e 1% não influenciou negativamente na resistência de união de um CIV de alta viscosidade à dentina sadia e afetada por cárie.
Palavras-chave
References
1. Mount GJ, Ngo H. Minimal intervention: a new concept for operative dentistry. Quintessence Int. 2000 Sep; 31(8):527-33. PMid:11203973.
2. Peters MC, McLean ME. Minimally invasive operative care. II. Contemporary techniques and materials: an overview. J Adhes Dent. 2001 Spring; 3(1):17-31.; 3: 17-31
3. Moshaverinia A, Chee WW, Brantley WA, Schricker SR. Surface properties and bond strength measurements of N-vinylcaprolactam (NVC) containing glass-ionomer cements. J Prosthet Dent. 2011 Mar; 105(3):185-93. http://dx.doi.org/10.1016/S0022-3913(11)60027-9
4. ten Cate JM, van Duinen RN. Hypermineralization of dentinal lesions adjacent to glass-ionomer cement restorations. J Dent Res. 1995 Jun; 74(6):1266-71. PMid:7629335. http://dx.doi.org/10.1177/00220345950740060501
5. Xie D, Brantley WA, Culbertson BM, Wang G. Mechanical properties and microstructures of glass-ionomer cements. Dent Mat. 2000 Mar;16(2):129-38. http://dx.doi.org/10.1016/S0109-5641(99)00093-7
6. Peez R, Frank S. The physical-mechanical performance of the new Ketac Molar Easymix compared to commercially available glass ionomer restoratives. J Dent. 2006 Sep; 34(8):582-7. PMid:16581174. http://dx.doi.org/10.1016/j.jdent.2004.12.009
7. Frencken JE, Makoni F. A treatment technique for tooth decay in deprived communities. World Health.1994; 1: 15-7.
8. Gao W, Smales R J, Gale M S. Fluoride release/uptake from newer glass ionomer cements used with the ART approach. Am J Dent. 2000 Aug; 13(4):201-4. PMid:11763931.
9. Smales RJ, Yip HK. The atraumatic restorative treatment (ART) approach for the management of dental caries. Quintessence Int. 2002 Jun; 33(6):427-32. PMid:12073723.
10. Jedrychowski JR, Caputo AA, Kerper S. Antibacterial and mechanical properties of restorative materials combined with chlorhexidines. J Oral Rehabil. 1983 Sep; 10(5):373-81. PMid:6355413. http://dx.doi.org/10.1111/j.1365-2842.1983.tb00133.x
11. Hoszek A, Ericson D. In vitro fluoride release and the antibacterial effect of glass ionomers containing chlorhexidine gluconate. Oper Dent. 2008 Nov-Dec;33(6):696-701. PMid:19051864. http://dx.doi.org/10.2341/08-20
12. Takahashi Y, Imazato S, Kaneshiro AV, Ebisu S, Frencken JE, Tay FR. Antibacterial effects and physical properties of glass-ionomer cements containing chlorhexidine for the ART approach. Dent Mat. 2006 22(7):647-52. PMid:16226806. http://dx.doi.org/10.1016/j. dental.2005.08.003
13. Tüzüner T, Kuşgöz A, Er K, Taşdemir T, Buruk K, Kemer B. Antibacterial activity and physical properties of conventional glass-ionomer cements containing chlorhexidine diacetate/cetrimide mixtures. J Esthet Restor Dent. 2011 Feb; 23(1):46-55. PMid:21323839. http:// dx.doi.org/10.1111/j.1708-8240.2010.00385.x
14. Yesilyurt C, Er K, Tasdemir T, Buruk K, Celik D. Antibacterial activity and physical properties of glass-ionomer cements containing antibiotics. Oper Dent. 2009 Jan-Feb; 34(1):18-23. PMid:19192833. http://dx.doi.org/10.2341/08-30
15. Türkün LS, Türkün M, Ertugrul F, Ates M, Brugger S. Long-term antibacterial effects and physical properties of a chlorhexidine containing glass ionomer cement. J Esthet Restor Dent. 2008; 20(1):29-44. PMid:18237338. http://dx.doi.org/10.1111/j.1708-8240.2008.00146.x
16. Ricci HA, Scheffel DLS, Santos FJ, Jafelicci-Junior M, Hebling J. Influência da clorexidina na capacidade de umectablidade da dentina hígida e afetada por cárie por um sistema adesivo. ROBRAC: Rev Odontol Brasil Central. 2011; 20 (53): 119-124.
17. Glasspole EA, Erickson RL,Davidson CL. Effect of surface treatments on bond strength of glass ionomers to enamel. Dent Mater. 2002 Sep; 18(6):454-62. http://dx.doi.org/10.1016/S0109-5641(01)00068-9
18. Gordan VV. Effect of conditioning times on resin-modified glass-ionomer bonding. Am J Dent. 2000 Feb; 13(1):13-6. PMid:11763896.
19. Kobayashi CA, Fujishima A, Miyasaki T, Kimura Y, Matsumoto K, Osada T , et al. Efect of Nd:YAG laser irradiation on shear bond strength of glass-ionomer luting cement to dentin surface. Int J Prothodont. 2003 Sep-Oct; 16(5):493-8. PMid:14651233.
20. Berry EA, Powers JM. Bond strength of glass ionomers to coronal and radicular dentin. Oper Dent. 1994 Jul-Aug;19(4):122-6. PMid:9028230.
21. Cattani-Lorente MA, Godin C, Meyer JM. Early strength of glass ionomer cements. Dent Mater. 1993 Jan; 9(1):57-62. http://dx.doi. org/10.1016/0109-5641(93)90107-2
22. Czarnecka B, Deregowska-Nosowicz P, Limanowska-Shaw H, Nicholson JW. Shear bond strengths of glass-ionomer cements to sound and to prepared carious dentine. J Mater Sci: Mater Med. 2007 May; 18(5):845-9. PMid:17203413. http://dx.doi.org/10.1007/s10856-006-0085-y
23. Choi K, Oshida Y, Platt JA, Cochran MA, Matis BA, Yi K. Microtensile bond strength of glass ionomer cements to artificially created carious dentin. Oper Dent. 2006 Sep-Oct;31(5):590-7. PMid:17024948. http://dx.doi.org/10.2341/05-108
24. Garcia FCP, Terada RSS, Carvalho RM. Testes mecânicos para a avaliação laboratorial da união resina /dentina. Rev Fac Odontol Bauru. 2002; 10(3): 118
25. Andrade AM, Garcia E, Moura SK, Reis A, Loguercio A, Silva LM, et al. Do the microshear test variables affect the bond strength values? Int J Dent. 2012. doi: 10.1155/2012/618960. http://dx.doi.org/10.1155/2012/618960
26. Way JL, Caputo AA, Jedrychowski JR. Bond strength of light-cured glass ionomers to carious primary dentin. J Dent Child. 1996 Jul‑Aug; 63(4):261-4. PMid:8893978.
27. Palma-Dibb RG, de Castro CG, Ramos RP, Chimello DT , Chinelatti MA. Bond strength of glass-ionomer cements to carious-affected dentin. J Adhes Dent. 2003 Spring; 5(1):57‑62. PMid:12729084.
28. Yoshida Y, Van Meerbeek B, Nakayama Y, Snauwaert J, Hellemans L, Lambrechts P, et al. Evidence of chemical bonding at biomaterialhard tissue interfaces. J Dent Res. 2000 Feb; 79(2):709-14. PMid:10728971. http://dx.doi.org/10.1177/00220345000790020301
29. Sano H. Relationship between caries detector staining and structural characteristics of carious dentin. J. Stomatol. Soc. Jpn. 1987 Mar; 54(1):241-70. http://dx.doi.org/10.5357/koubyou.54.241
30. Nicholson JW, Aggarwal A, Czarnecka B, Limanowska-Shaw H. The rate of change of pH of lactic acid exposed to glass-ionomer dental cements. Biomaterials. 2000 Oct; 21(19):1989‑93. http://dx.doi.org/10.1016/S0142-9612(00)00085-5
31. Cruz JB, Lenzi TL, Tedesco TK, Guglielmi Cde A, Raggio DP. Eroded dentin does not jeopardize the bond strength of adhesive restorative materials. Braz Oral Res. 2012 Jul-Aug; 26(4):306-12. PMid:22714927. http://dx.doi.org/10.1590/S1806-83242012005000009