Estudo in vitro da influência do formato e do tratamento de superfície de implantes odontológicos no torque de inserção, resistência ao arrancamento e frequência de ressonância
In vitro study of the influence of the shape and surface treatment of dental implants in insertion torque, pullout resistance and resonance frequency
Oliscovicz, Nathalia Ferraz; Valente, Mariana Lima da C.; Marcantonio Jr, Elcio; Shimano, Antonio Carlos; Reis, Andrea Candido dos
Resumo
Objetivo: A proposta do estudo foi avaliar a influência do formato e do tratamento de superfície na estabilidade primária de implantes odontológicos, inseridos em diferentes substratos, utilizando-se associação de métodos, como torque de inserção, resistência ao arrancamento e frequência de ressonância. Material e método: Foram utilizados 32 implantes da marca Conexão (Conexão Sistemas de Prótese Ltda, Arujá, São Paulo, Brasil), sendo: oito cilíndricos com tratamento Porous (CA), oito cilíndricos usinados (MS), oito cilíndricos tratamento duplo Porous (MP) e oito cônicos sem tratamento (CC). Os substratos utilizados para inserção foram: costela de porco; poliuretana Synbone©; poliuretana Nacional (15, 20, 40 PCF), e madeira. O torque de inserção (TI) foi quantificado utilizando-se um torquímetro digital Kratos; a força de arrancamento (RA) foi aferida por meio de tração axial, realizada em uma Máquina Universal de Ensaios (Emic DL-10000), e utilizou-se também análise por meio de frequência de ressonância (RF). Para obtenção dos resultados estatísticos, utilizou-se análise de variância e teste de Tukey (significância de 5%). Resultado: Ao analisar o torque de inserção, verificou-se que os implantes com tratamento de superfície não foram diferentes estatisticamente dos usinados, assim como os implantes cilíndricos não tiveram diferença dos cônicos em todos os substratos (p>0,05), com exceção da poliuretana Synbone©. Em relação à resistência ao arrancamento, os implantes tratados e usinados, assim como cônicos e cilíndricos, não tiveram diferença estatística (p>0,05); a análise de frequência de ressonância mostrou que não houve diferença entre os implantes (p>0,05), com exceção da poliuretana Nacional (20 PCF). Conclusão: Os formatos e o tratamento de superfície estudados não demonstraram valores significantes quando foram comparados os implantes entre si e, considerando os substratos avaliados, não houve diferença estatística entre os diferentes tipos de implantes.
Palavras-chave
Abstract
Objective: The purpose of the study was to evaluate the influence of the shape and surface treatment on the primary stability of dental implants inserted in different substrates through association methods such as insertion torque, pullout strength and resonance frequency. Material and method: 32 implants were used with 8 cylindrical treatment Porous (CA), 8 machined cylindrical (MS), 8 cylinder dual treatment Porous (MP) and 8 tapered untreated (CC). The substrates used for inclusion were: pork rib; © Synbone polyurethane, polyurethane National (15, 20, 40 PCF) and wood. The insertion torque (TI) was quantified using a digital torque Kratos wrench, the pullout strength (RA) was measured by means of axial traction performed in an Emic DL-10000 and analysis was also used by the resonance frequency (RF). To obtain the statistical results, we used analysis of variance and Tukey’s test (5% significance). Result: To analyze the insertion torque, it was found that implants with surface treatment were not statistically different from machined as well as the cylindrical implants did not differ from tapered on all substrates (p>0.05), except © Synbone of polyurethane; in relation to RA, treated and machined implants as well as tapered and cylindrical, showed no statistical difference (p>0.05); FR analysis showed no difference between implants (p>0,05), with the exception of National polyurethane (20 PCF). Conclusion: formats and surface treatment studied showed no significant values when compared implants together and considering the tested substrates showed no statistical difference between the different types of implants.
Keywords
Referências
1. Aksoy U, Eratalay K, Tözüm TF. The possible association among bone density values, resonance frequency measurements, tactile sense, and histomorphometric evaluations of dental implant osteotomy sites: a preliminary study. Impl Dent. 2009; 18(4): 316-25. PMid:19667820. http://dx.doi.org/10.1097/ID.0b013e31819ecc12
2. Brouwers JEIG, Lobbezoo F, Visscher CM, Wismeijer D, Naeije M. Reliability and validity of the instrumental assessment of implant stability in dry human mandibles. J Oral Rehabil. 2009; 36(4): 279 - 83. PMid:19220717. http://dx.doi.org/10.1111/j.1365-2842.2009.01944.x
3. Camacho FMT, Sakakura CE, Mera MFM, Esteves JC, Ribeiro FS, Pontes AEF. Avaliação clínica em curto prazo do sistema de Cone Morse e plataforma reduzida em prótese sobre implantes do tipo protocolo: estudo piloto randomizado controlado. Rev Odontol UNESP. 2012; 41(4): 247-53.
4. Chong L, Khocht A, Suzuki JB, Gaughan J. Effect of implant design on initial stability of tapered implants. J Oral Implantol. 2009; 35(3): 130-5. PMid:19579524. http://dx.doi.org/10.1563/1548-1336-35.3.130
5. Degidi M, Giuseppe D, Adriano P. Determination of primary stability: a comparison of the surgeon's perception and objective measurements. Int J Oral Maxillofac Implants. 2010; 25(3): 558-61. PMid:20556255.
6. Mazzo CR, Reis AC, Shimano AC, Valente ML. In vitro analysis of the influence of surface treatment of dental implants on primary stability. Braz Oral Res. 2012; 26(4): 313-17. http://dx.doi.org/10.1590/S1806-83242012005000006
7. Morton D, Jaffin R, Weber H-P. Immediate restoration and loading of dental implants: clinical considerations and protocols. Int J Oral Maxillofac Implants. 2004; 19: 103 - 8. PMid:15635950.
8. Santos MV, Elias CN, Cavalcanti Lima JH. The effects of superficial roughness and design on the primary stability of dental implants. Clin Implant Dent Relat Res. 2011; 13(3): 215-23. PMid:19744197. http://dx.doi.org/10.1111/j.1708-8208.2009.00202.x
9. Rosa RC, Silva P, Shimano AC, Volpon JB, Defino HLA, Schleicher P, et al. Biomechanical analysis of the variables related to the pullout strength of screws in the vertebral fixation system. Rev Bras Ortop. 2008; 43: 293-9. http://dx.doi.org/10.1590/S0102-36162008000700005
10. Desai SR, Desai MS, Katti G, Karthikeyan I. Evaluation of design parameters of eight dental implant designs: a two-dimensional finite element analysis Níger. J Clin Pract. 2012; 15(2): 176-81.
11. Aleo E, Varvara G, Scarano A, Sinjari B, Murmura G. Comparison of the primary stabilities of conical and cylindrical endosseous dental implants: an in-vitro study. J Biol Regul Homeost Agents. 2012; 26(1): 89-96. PMid:22475100.
12. Tetè S, Zizzari V, De Carlo A, Sinjari B, Gherlone E. Macroscopic and microscopic evaluation of a new implant design supporting immediately loaded full arch rehabilitation. Ann Stomatol (Roma). 2012; 3(2): 44-50.
13. Carvalho BM, Pellizzer EP, Moraes SLD, Falcón-Antenucci RM, Ferreira JS Jr. Surface treatments in dental implants. Rev Cir Traumat Buco-Maxilo-Fac. 2009; 9(1): 123-30.
14. Bezerra F, Ribeiro EDP, Sousa SB, Lenharo A. Influence of macro-geometry in the primary stability of implants. Innov Implant J Biomater Esthet. 2010; 15(1): 29-34.
15. Wennerberg A, Albrektsson T, Johansson C, Andersson B. Experimental study of turned and grit-blasted screw-shaped implants with special emphasis on effects of blasting material and surface topography. Biomaterials. 1996; 17(1): 15 - 22. http://dx.doi.org/10.1016/0142-9612(96)80750-2
16. Tabassum A, Meijer GJ, Wolke JGC, Jansen JA. Influence of surgical technique and surface roughness on the primary stability of an implant in artificial bone withdifferent cortical thickness: a laboratory study. Clin Oral Implants Res. 2010; 21(2): 213 - 220. PMid:20070754. http://dx.doi.org/10.1111/j.1600-0501.2009.01823.x
17. Ahmad OK, Kelly JR. Assessment of the primary stability of dental implants in artificial bone using resonance frequency and percussion analyses. Int J Oral Maxillofac Implants. 2013; 28(1): 89-95. PMid:23377052. http://dx.doi.org/10.11607/jomi.2554
18. Gabay E, Cohen O, Machtei EE. A novel device for resonance frequency assessment of one-piece implants. Int J Oral Maxillofac Implants. 2012; 27(3): 523-27. PMid:22616044.
19. Kahraman S, Bal BT, Asar NV, Turkyilmaz I, Tözüm TF. Clinical study on the insertion torque and wireless resonance frequency analysis in the assessment of torque capacity and stability of self-tapping dental implants. J Oral Rehabil. 2009; 36(10): 755-61. PMid:19758410. http://dx.doi.org/10.1111/j.1365-2842.2009.01990.x
20. Turkyilmaz I, Mcglumphy EA. Influence of bone density on implant stability parameters and implant success: a retrospective clinical study. BMC Oral Health. 2008 24; 8: 32.
21. American Society for Testing Materials. Standard Specification and Test Methods for Metallic Medical Bone Screws. Report: F543 [cited 2011 Jan 20]. Available from: http://www.astm.org
22. Salmória KK, Tanaka OM, Guariza-Filho O, Camargo ES, de Souza, LT, Maruo, H. Insertional torque and axial pull-out strength of mini-implants in mandibles of dogs. Am J Orthod Dentofacial Orthop. 2008; 133(6): 790.e15-22.
23. Zamarioli A, Simões PA, Shimano AC, Defino HLA. Insertion torque and pullout strength of vertebral screws with cylindrical and conic core. Rev Bras Ortop. 2008; 43(10): 452-59. http://dx.doi.org/10.1590/S0102-36162008001000005
24. Cristofolini L, Viceconti M. Mechanical validation of whole composite tibia models. J Biomechanics. 2000; 33(3): 279-88. http://dx.doi.org/10.1016/S0021-9290(99)00186-4
25. Oliscovicz NF, Shimano AC, Marcantonio Junior E, Lepri CP, Reis AC. Analysis of primary stability of dental implants inserted in different substrates using the pullout test and insertion torque. Int J Dent (Online). 2013 (2013), Article ID 194987, 5 pages http://dx.doi.org/10.1155/2013/194987
26. Marquezan M, Osório A, Sant'anna E, Souza MM, Maia L. Does boné mineral density influence the primary stability of dental implants? A systematic review. Clin Oral Implants Res. 2012; 23(7): 767-74.
27. Isoda K, Ayukawa Y, Tsukiyama Y, Sogo M, Matsushita Y, Koyano K. Relationship between the bone density estimated by cone-beam computed tomography and primary stability of dental implants. Clin Oral Implants Res. 2012; 23(7): 832-36. PMid:21635560. http://dx.doi.org/10.1111/j.1600-0501.2011.02228.x
28. Turkyilmaz I, Company AM. Sensitivity of resonance frequency analysis method to assess implant stability. N Y State Dent J. 2011; 77(5): 44-9. PMid:21545533. http://dx.doi.org/10.1111/j.1600-0501.2011.02203.x
29. Vasconcellos LG, Nishioka RS, Vasconcellos LM, Nishioka LN. Effect of axial loads on implant-supported partial fixed prostheses by strain gauge analysis. J Appl Oral Sci. 2011; 19(6): 610-15. PMid:22230995.
30. Akkocaoglu M, Uysal S, Tekdemir I, Akca K, Cehreli MC. Implant design and intraosseous stability of immediately placed implants: a human cadaver study. Clin Oral Implants Res. 2005; 16(2): 202 - 9. PMid:15777330. http://dx.doi.org/10.1111/j.1600-0501.2004.01099.x
31. Pfeil W, Pfeil M. Estruturas de madeira. 6ª ed. Rio de Janeiro: Ed. LTC; 2003.
32. Tabassum A, Meijer GJ, Wolke JGC, Jansen JA. Influence of surgical technique and surface roughness on the primary stability of an implant in artificial bone with different cortical thickness: a laboratory study. Clin Oral Implants Res. 2010; 21(2): 213-20. PMid:20070754. http://dx.doi.org/10.1111/j.1600-0501.2009.01823.x
33. Grassi S, Piattelli A, Figueiredo LC, Feres M, de Mello L, Iezzi G, et al. Histologic evaluation of earlybone response to different implant surfaces. J Periodontol. 2006; 77(10): 1736-43. PMid:17032118. http://dx.doi.org/10.1902/jop.2006.050325
34. Martínez González JM, García Sabán F, Ferrándiz Bernal J, Gonzalo Lafuente JC, Cano Sánchez J, Barona Dorado C. Removal torque and physico-chemical characteristics of dental implants etched with hydrofluoric and nitric acid. An experimental study in Beagle dogs. Med Oral Patol Oral Cir Bucal. 2006; 11(3): E281-5. PMid:16648769.
35. Cehreli MC, Karasoy D, Akca K, Eckert SE. Meta-analysis of methods used to assess implant stability. Int J Oral Maxillofac Implants. 2009; 24(6): 1015 - 32. PMid:20162105.
36. Kahraman S, Bal BT, Asar NV, Turkyilmaz I, Tözüm TF. Clinical study on the insertion torque and wireless resonance frequency analysis in the assessment of torque capacity and stability of self-tapping dental implants. J Oral Rehabil. 2009; 36(10): 755-61. PMid:19758410. http://dx.doi.org/10.1111/j.1365-2842.2009.01990.x
37. Rozé J, Babu S, Saffarzadeh A, Gayet-Delacroix M, Hoornaert A, Layrolle P. Correlating implant stability to bone structure. Clin Oral Implants Res. 2009; 20(10): 1140 - 5. PMid:19519789. http://dx.doi.org/10.1111/j.1600-0501.2009.01745.x
38. Barros RRM, Novaes Jr AB, Papalexiou V, Souza SLS, Taba M Jr., Palioto DB, et al. Effect of biofunctionalized implant surface on osseointegration - a histomorphometric study in dogs. Braz Dent J. 2009; 20(2): 91-8. http://dx.doi.org/10.1590/S0103-64402009000200001
39. Hofstetter W, Sehr H, Wild MD, Portenier J, Gobrecht J, Hunziker EB. Modulation of human osteoblasts by metal surface chemistry. J Biomed Mater Res A. 2013 Aug;101(8):2355-64. doi: 10.1002/jbm.a.34541. Epub 2013 Jan 28. http://dx.doi.org/10.1002/jbm.a.34541
40. Kim S-J, Kim M-R, Rim J-S, Chung S-M, Shin SW. Comparison of implant stability after different implant surface treatments in dog bone. J Appl Oral Sci. 2010; 18(4): 415-20. http://dx.doi.org/10.1590/S1678-77572010000400016
41. Cooper LF. Factors influencing primary dental implant stability remain unclear. J Evid Based Dent Pract. 2012; 12(3 Suppl): 185-6. http://dx.doi.org/10.1016/S1532-3382(12)70033-7
42. Prodanov L, Lamers E, Wolke J, Huiberts R, Jansen JA, Frank Walboomers X. In vivo comparison between laser-treated and grit blasted/acid etched titanium. Clin Oral Implants Res. 2013 Jan 25. doi: 10.1111/clr.12109. [Epub ahead of print] http://dx.doi.org/10.1111/clr.12109
43. Da Cunha H, Francischone CE, Nary H Filho, Oliveira RCG. A comparison between insertion torque and resonance frequency in the assessment of primary stability and final torque capacity of standard and TiUnite single-tooth implants under immediate loading. Int J Oral Maxillofac Implants. 2004; 19(4): 578-85. PMid:15346756.
44. Tabassum A, Meijer GJ, Wolke JGC, Jansen JA. Influence of the surgical technique and surface roughness on the primary stability of an implant in artificial bone with a density equivalent to maxillary bone: a laboratory study. Clin Oral Implants Res. 2009; 20(4): 327 - 32. PMid:19298286. http://dx.doi.org/10.1111/j.1600-0501.2008.01692.x
45. Elmengaard B, Bechtold JE, Soballe KS. In vivo study of the effect of treatment on bone on growth on press-fit titanium alloy implants. Biomaterials. 2005; 26(17): 3521-6. PMid:15621242. http://dx.doi.org/10.1016/j.biomaterials.2004.09.039
46. Rabel A, Köhler SG, Schmidt-Westhausen AM. Clinical study on the primary stability of two dental implant systems with resonance frequency analysis. Clin Oral Investigations. 2007; 11(3): 257 - 65. PMid:17401588. http://dx.doi.org/10.1007/s00784-007-0115-2
47. Gedrange T, Hietschold V, Mai R, Wolf P, Nicklish M, Harzer W. An evaluation of resonance frequency analysis for the determination of the primary stability of orthodontic palatal implants. A study in human cadavers. Clin Oral Implants Res. 2005; 16(4): 425-31. PMid:16117766. http://dx.doi.org/10.1111/j.1600-0501.2005.01134.x
48. Leite VC, Shimano AC, Gonçalves GAP, Kandziora F, Defino HLA. The influence of insertion torque on pedicular screws' pullout resistance. Acta Ortop Bras. 2008; 16: 214-6. http://dx.doi.org/10.1590/S1413-78522008000400005
49. Sakoh J, Wahlmann U, Stender E, Al-Nawas B, Wagner W. Primary stability of a conical implant and a hybrid,cylindric screw-type implant in vitro. Int J Oral Maxillofac Implants. 2006; 21(4): 560-6. PMid:16955606.