Estabilidade dimensional de uma resina acrílica para coroas provisórias em função de diferentes técnicas de processamento ao longo do tempo
Long-term dimensional stability of an acrylic resin for provisional crowns with different types of processing techniques
Garcia-Lopez, David Alejandro; Rezende, Carlos Eduardo E.; Hiramatsu, Daniel Afonso; Nishida, Cinthia Lumi; Rubo, José Henrique
Resumo
Introdução: A estabilidade dimensional das resinas acrílicas influencia na adaptação das coroas provisórias e, consequentemente, no resultado do tratamento reabilitador. Objetivo: Avaliar a estabilidade dimensional, ao longo do tempo, de uma resina acrílica processada de diferentes maneiras. Material e método: Cinco técnicas de polimerização da resina acrílica foram testadas: I – polimerização térmica utilizando líquido de polimerização rápida em mufla; II – autopolimerização sob pressão; III – autopolimerização utilizando pincel; IV – autopolimerização após mistura (pó + líquido) em pote Dappen e inserção em matriz de aço na fase arenosa; V – autopolimerização após mistura em pote Dappen com inserção na matriz metálica na fase plástica. Foram confeccionados dez corpos de prova para cada tipo de processamento. Avaliou-se a estabilidade dimensional por meio de matriz de aço inox confeccionada segundo a especificação nº19 da ADA. Os corpos de prova foram armazenados em água destilada a 37°C e examinados nos períodos de 1 hora, 1, 7, 15, 10, 90 e 180 dias após a polimerização, com o auxílio de um microscópio óptico com aumento de 20×. Os resultados foram submetidos à análise de dupla variância (Teste de Tukey para Tempo e Técnica de processamento) em nível de 5% de significância. Resultado: Todos os grupos experimentais apresentaram alterações dimensionais entre o sétimo e o 15º dia; após esse período de tempo, houve alterações dimensionais estatisticamente significantes, para as diferentes técnicas estudadas. Conclusão: A estabilidade dimensional da resina acrílica não sofreu influência das diferentes técnicas de processamento avaliadas; entretanto, foi influenciada pelo tempo de armazenamento.
Palavras-chave
Abstract
Introduction: The dimensional stability of acrylic resins influences the temporary crowns fitting and can affect the final restoration results. Objective: To evaluate the long-term dimensional stability of an acrylic resin used for fabrication of provisional crowns. Material and method: Five types of processing techniques were evaluated: I – thermal polymerization using fast polymerization liquid and flask; II – auto-polimerization under pressure in a stainless steel matrix; III – auto-polimerization using the bead brush technique to build the sample; IV – auto-polimerization after mixture (powder + liquid) in a dappen dish and insertion in a stainless steel matrix at the sand stage; V – auto-polimerization after mixture in a dappen dish with insertion in a stainless steel matrix at the plastic stage. For each type of processing technique, 10 samples were made. Dimensional stability was evaluated by means of a steel matrix made following the ADA specification nº19. The samples were stored in distilled water at 37 °C and examined at the periods of 1 hour, 1, 7, 15, 30, 90 and 180 days, with an optic microscope with 20× magnification. The results were subjected to the 2-way analysis of variance (Tukey Test) at the significance level of 5% for the variables Time and Processing Technique. Result: All samples had dimensional alterations from day 7 to the day 15, regardless of the technique used. From day 15 to 180, there were no statistically significant dimensional alterations. Conclusion: The dimensional stability of the acrylic resin was not influenced by the different processing techniques tested, however, it was influenced by the storage time.
Keywords
References
1. Ehrenberg D, Weiner GI, Weiner S. Long-term effects of storage and thermal cycling on the marginal adaptation of provisional resin crowns: a pilot study. J Prosthet Dent. 2006 Mar; 95(3):230-6. PMid:16543021. http://dx.doi.org/10.1016/j.prosdent.2005.12.012
2. Gratton DG, Aquilino SA. Interim restorations. Dent Clin North Am. 2004 Apr; 48(2):487-97. PMid:15172612. http://dx.doi.org/10.1016/j.cden.2003.12.007
3. Hernandez EP, Oshida Y, Platt JA, Andres CJ, Barco MT, Brown DT. Mechanical properties of four methylmethacrylate-based resins for provisional fixed restorations. Biomed Mater Eng. 2004;14(1):107-22. PMid:14757958.
4. Nejatidanesh F, Lotfi HR and Savabi O. Marginal accuracy of interim restorations fabricated from four interim autopolymerizing resins. J Prosthet Dent. 2006 May; 95(5):364-7. PMid:16679131. http://dx.doi.org/10.1016/j.prosdent.2006.02.030
5. Balkenhol M, Knapp M, Ferger P, Heun U, Wöstmann B. Correlation between polymerization shrinkage and marginal fit of temporary crowns. Dent Mater. 2008 Nov; 24(11):1575-84. doi: 10.1016/j.dental .2008.07.001. Epub 2008 Aug 20. http://dx.doi.org/10.1016/j.dental.2008.07.001
6. Machado A, Giampaolo E, Leonardi P, Vergani CE. Unrestricted linear dimensional changes of two reline resins and one heat-curing acrylic resin hard. J Prosthet Dent. 1996 Oct; 76(4):414-7. http://dx.doi.org/10.1016/S0022-3913(96)90547-8
7. Boberick, K, McCool, J. Dimensional stability of record bases fabricated from light-polymerized composite using two methods. J Prosthet Dent. 1998 Apr; 79(4):399-403. http://dx.doi.org/10.1016/S0022-3913(98)70152-0
8. Consani RL, Domitti SS, Consani, S. Effect of a new tension system, used in acrylic resin flasking, on the dimensional stability of denture bases. J Prosthet Dent. 2002 Sep; 88(3):285-9. PMid:12426498. http://dx.doi.org/10.1067/mpr.2002.128447
9. Skinner EW. Acrylic resins: an appraisal of their use in dentistry. J Am Dent Assoc. 1949 Sep; 39(3):261-8. PMid:18134616.
10. Antonopoulos AN. Dimensional and occlusal changes in fluid resin dentures. J Prosthet Dent. 1978 Jun; 39(6):605-15. http://dx.doi.org/10.1016/S0022-3913(78)80068-7
11. Latta GH Jr, Bowles WF 3rd, Conkin JE. Three dimensional stability of new denture base resin systems. J Prosthet Dent. 1990 Jun; 63(6):654-61. http://dx.doi.org/10.1016/0022-3913(90)90322-4
12. Rizzati-Barbosa CM, Del Bel Cury AA, Panzeri H. Influência da sorção de água no processo de polimerização por energia de microondas na adaptabilidade de próteses totais. Rev Odontol Univ São Paulo. 1995 jul/set; 9(3):197-206.
13. Nishida CL, Bianco VC, Hiramatsu DA, Moretti Neto RT, Rubo JH. Análise da rugosidade superficial de diferentes marcas comerciais de resina acrílica para coroas provisórias. Full Dentistry in Science. 2011; 2:56-62.
14. Hiramatsu DA, Moretti Neto RT, Ferraz BFR, Porto VC, Rubo JH. Roughness and porosity of provisional crowns. RPG: Rev Pós Grad. 2011;18:108-12.
15. Revised American Dental Association Specification nº19 for Non-Aqueous, Elastomeric Dental Impression Materials. J Am Dent Assoc. 1977;94(4):733-41. PMid:265337.
16. Honorez P, Catalan A, Angnez U, Grimonster J. The effect of three processing cylces on some physical and chemical properties of a heat-cured acrylic resin. J Prosthet Dent. 1989 Apr; 61(4):510-7. http://dx.doi.org/10.1016/0022-3913(89)90025-5
17. Lee SY, Lai YL, Hsu TS. Influence of polymerization conditions on monomer elution and microhardness of autopolymerized polymethyl methacrylate resin. Eur J Oral Sci. 2002;110(2):179-83. PMid:12013564. http://dx.doi.org/10.1034/j.1600-0722.2002.11232.x
18. Ogawa T, Tanaka M, Koyano K. Effect of water temperature during polymerization on strength of autopolymerizing resin. J Prosthet Dent. 2000 Aug; 84(2):222-4. PMid:10946343. http://dx.doi.org/10.1067/mpr.2000.108574
19. Keenan PLJ, Radford DR, Clark RKF. Dimensional change in complete dentures fabricated by injection molding and microwave processing. J Prosthet Dent. 2003 Jan; 89(1):37-44. PMid:12589284. http://dx.doi.org/10.1067/mpr.2003.3
20. Miéssi AC, Goiato MC, dos Santos DM, Dekon SF, Okida RC. Influence of storage period and effect of different brands of acrylic resin on the dimensional accuracy of the maxillary denture base. Braz Dent J. 2008;19(3):204-8. PMid:18949291. http://dx.doi.org/10.1590/S0103-64402008000300005
21. Garcia LFR, Roselino LMR, Mundim FM, Pires-de-Souza FCP, Consani S. Influence of artificial accelerated aging on dimensional stability of acrylic resins submitted to different storage protocols. J Prosthodont. 2010 Aug; 19(6):432-37. doi:10.1111/j.1532-849X.2010.00611.x. Epub 2010 Jun 8. http://dx.doi.org/10.1111/j.1532-849X.2010.00611.x
22. Ogawa T, Aizawa S, Tanaka M, Matsuya S, Hasegawa A, Koyano K. Effect of water temperature on the fit of provisional crown margins during polymerization. J Prosthet Dent. 1999 Dec; 82(6):658-61. http://dx.doi.org/10.1016/S0022-3913(99)70006-5
23. Kim SH, Watts DC. Polymerization shrinkage-strain kinetics of temporary crown and bridge materials. Dent Mater. 2004 Jan; 20(1):88-95. http://dx.doi.org/10.1016/S0109-5641(03)00101-5
24. Jamani KD, Abuzar MAM. Effect of denture thickness on tooth movement during processing of complete dentures. J Oral Rehabil. 1998 Sep; 25(9):725-9. PMid:9758405. http://dx.doi.org/10.1046/j.1365-2842.1998.00300.x
25. Salim S, Sadamori S, Hamada T. The dimensional accuracy of rectangular acrylic resin specimens cured by three denture base processing methods. J Prosthet Dent. 1992 Jun; 67(6):879-81. http://dx.doi.org/10.1016/0022-3913(92)90606-B
26. Kimpara ET, Muench A . Influência de variáveis de processamento na alteração dimensional de dentaduras de resina acrílica. RPG: Rev Pós-Grad. 1996 abr/jun; 3(2):110-4.