Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/doi/10.1590/S1807-25772013000100001
Revista de Odontologia da UNESP
Original Article

Metallographic analysis of pure Ti submitted to Nd:YAG laser and TIG welding

Análise metalográfica do titânio puro submetido à soldagem laser Nd:YAG e TIG

Piveta, Ana Cláudia Gabrielli; Ricci, Weber Adad; Montandon, Andréia Affonso Barreto; Nagle, Maurício Meirelles

Downloads: 1
Views: 1153

Abstract

The welding method most commonly used in dentistry can not be applied to pure titanium and its alloys and its alloys due to high reactivity of titanium with the atmospheric elements must not be welded by common process. Objective: This study surveyed the characteristics of commercially pure titanium metal intact samples and those laser weld and tungsten inert gas weld. Material and method: Fifteen cylindrical rods were developments by using brass rods are patterns. The samples were invested in casings, subjected to thermal cycles, and positioned in a plasma arc-welding machine under argon atmosphere and vacuum, and titanium was injected under vacuum/pressure. Three groups were formed I: laser welding, II, III and TIG welding, without welding. The bodies of the test piece in group I and II were cut in half and welded by TIG and laser, respectively, and group III was maintained intact as control. The metallographic analysis was performed under magnification 50×, 100× and 200× microscope. Result: The results obtained in the micrographs, the commercially pure titanium showed an equiaxed grain morphology of α phase, the laser weld bead showed martensitic structure and TIG Widmanstätten microstructure. Conclusion: Martensitic microstructure is in agreement with the high cooling rate from the laser welding process. Martensitic and Widmansttäten structures are more refined when compared to the microstructure of the base metal.

Keywords

Dental soldering, titanium, dental prosthesis, dental implantation.

Resumo

Os métodos de soldagem mais utilizados em Odontologia não podem ser aplicados ao titânio puro e às suas ligas em função da alta reatividade do titânio com elementos atmosféricos; dessa forma, o mesmo não deve ser soldado por processo comum. Objetivo: O objetivo deste trabalho foi avaliar a característica metalúrgica do titânio comercialmente puro sem solda e submetido aos processos de soldagem a laser e TIG. Material e método: Foram confeccionados 15 corpos de prova em titânio comercialmente puro, cinco para cada condição, na forma de hastes cilíndricas, obtidas por fundição odontológica, sob atmosfera de gás argônio e vácuo, com calor produzido por um arco voltaico, com a injeção do titânio sob vácuo-pressão. Três grupos foram formados I: soldagem a laser; II: soldagem TIG, e III: sem solda. Os corpos de prova do grupo I e II foram seccionados ao meio e soldados por TIG e por laser, respectivamente; o grupo III foi mantido sem corte e sem solda, como controle. A análise metalográfica foi realizada sob aumentos de 50×, 100× e 200×, em microscópio. Resultado: Pelos resultados obtidos nas micrografias, o titânio comercialmente puro apresentou uma morfologia de grãos equiaxiais da fase α, o cordão de solda a laser apresentou estrutura martensítica e, na TIG, microestrutura Widmanstätten. Conclusão: A microestrutura martensítica é condizente com a alta taxa de resfriamento proveniente do processo de soldagem a laser. As estruturas martensítica e Widmansttäten são mais refinadas quando comparadas à microestrutura do metal base.

Palavras-chave

Soldagem em odontologia, titânio, prótese dentária, implante dentário.

References



1. Oda Y, Okabe T. Effect of corrosion on the strength of soldered titanium and Ti- 6Al-4V alloy. Dent Mater. 1996;12:167-72. http://dx.doi.org/10.1016/S0109-5641(96)80016-9

2. Wiskott HWA, Doumas T, Scherrer SSS, Susz C, Belser UC. Microestructures of brazings and welds using grade 2 commercially pure titanium. Int J Prosthodont. 2001;14:40-7. PMid:11842903.

3. Huang HH, Lin MC, Lin CC, Lin SC, Hsu, CC, Chen FL, et al. Effects of welding pulse energy and fluoride ion on the cracking susceptibility and fatigue behavior of Nd:YAG laser-welded cast titanium joints. Dent Mater J. 2006;25:632-40. PMid:17076339. http://dx.doi.org/10.4012/dmj.25.632

4. Longoni S, Sartori M, Ariello F, Anzani M, Baldoni M. Passive definitive fit of bar-supported implant overdentures. Implant Dent. 2006;15:129-34. PMid:16766894. http://dx.doi.org/10.1097/01.id.0000217775.95124.03

5. Cecconi BT, Koeppen RG, Phoenix RD, Cecconi ML. Casting titanium partial denture frameworks: a radiographic evaluation. J Prosthet Dent. 2002;87:277- 80. PMid:11941354. http://dx.doi.org/10.1067/mpr.2002.122275

6. Al Wazzan KA, Al-Nazzawi AA. Marginal and internal adaptation of commercially pure titanium and titanium-aluminum-vanadium alloy cast restorations. J Contemp Dent Pract. 2007;8:19-26. PMid:17211501.

7. Haag P, Nilner K. Questions and answers on titanium-ceramic dental restorative systems: a literature study. Quintessence Int. 2007;38:5-13.

8. Hruska AR, Borelli P. Quality criteria for pure titanium casting, laboratory soldering, intraoral welding, and a device to aid in making uncontaminated castings. J Prosthet Dent.1991;66:561-5. http://dx.doi.org/10.1016/0022-3913(91)90524-Z

9. Yamazoe J, Nakagawa M, Matono Y, Takeuchi A, Ishikawa K. The development of Ti alloys for dental implant with high corrosion resistance and mechanical strength. Dent Mater J. 2007;26:260-67. PMid:17621943. http://dx.doi.org/10.4012/dmj.26.260

10. Rocha R, Pinheiro AL, Villaverde AB. Flexural strenght of purê Ti, Ni-Cr and Co-Cr alloys submitted toNd:YAG Laser ou TIG welding. Braz Dent J. 2006;17:20-3. PMid:16721459. http://dx.doi.org/10.1590/S0103-64402006000100005

11. American Society for Metals. Metals handbook. Ohio: Metals Park; 1983.

12. Rubenstein JE, Ma T. Comparison of interface relationships between implant components for laser-welded titanium frameworks and standard cast frameworks. Int J Oral Maxillofac Implants. 1999;14:491-5. PMid:10453662.

13. Wang RR, Chang CT. Thermal modeling of laser welding for titanium dental restorations. J Prosthet Dent. 1998;79:335-41. http://dx.doi.org/10.1016/S0022-3913(98)70247-1

14. Yamagishi T, Ito M, Fujimura Y. Mechanical properties of laser welds of titanium in dentistry by pulsed Nd:YAG laser apparatus. J Prosthet Dent. 1993;70:264-73. http://dx.doi.org/10.1016/0022-3913(93)90063-T

15. Liu J, Watanabe I, Yoshida K, Atsuta M. Joint strength of laser- welded titanium. Dent Mater. 2002;18:143-8. http://dx.doi.org/10.1016/S0109-5641(01)00033-1

16. Chai T, Chou CK. Mechanical properties of Laser welded titanium joints under different conditions. J Prosthet Dent.1998;79:477-83. http://dx.doi.org/10.1016/S0022-3913(98)70165-9

17. Wang RR, Welsch GE. Joining titanium with tungsten inert gas welding, laser welding and infrared brazing. J Prosthet Dent. 1995;74:521-30. http://dx.doi.org/10.1016/S0022-3913(05)80356-7

18. Piveta ACG, Montandon ABA, Ricci WA, Nagle MM. Mechanical strength and analysis of fracture of titanium joining submitted to laser and tig welding. Materials Research. 2012;15: 1-7. http://dx.doi.org/10.1590/S1516-14392012005000127

19. Buzzoni HA. Manual de solda elétrica. 7a ed. São Paulo: Indústrias Gráficas; 1970.

20. Bertrand C, Laplanche O, Rocca JP, LE Petitcorps Y, Nammour S. Effect of the combination of different welding parameters on melting characteristics of grade 1 titanium with a pulsed Nd-YAG laser. Lasers Med Sci. 2007;22:237-44. PMid:17308957. http://dx.doi.org/10.1007/s10103-006-0438-2

21. Sjögren G, Andersson M, Bergman M. Laser welding of titanium in dentistry. Acta Odontol Scand. 1988;46:247-53. PMid:2903608. http://dx.doi.org/10.3109/00016358809004774

22. Watanabe I, Topham DS. Laser welding of cast titanium and dental alloys using argon shielding. J Prosthodont. 2006; 15:102-7. PMid:16650010. http://dx.doi.org/10.1111/j.1532-849X.2006.00082.x

23. Hart CN, Wilson PR. Evaluation of welded titanium joints used with cantilevered implant-supported prostheses. J Prosthet Dent. 2006; 96:25-32. PMid:16872927. http://dx.doi.org/10.1016/j.prosdent.2006.05.003

24. Berg E, Davik G, Hegdahl T, Gjerdet NR. Hardness, strength, and ductility of prefabricated titanium rods used in the manufacture of spark erosion crowns. J Prosthet Dent. 1996;75:419-25. http://dx.doi.org/10.1016/S0022-3913(96)90035-9

25. Bezerra RM, Souza PCRD, Ramires I, Bottino MA, Guastaldi AC. Microestrutura e resistência à corrosão do Ti c.p. soldado a laser utilizando em prótese sobre implantes. Ecl Quim. 1999;24:113-24. http://dx.doi.org/10.1590/S0100-46701999000100009

26. Lancaster JF. Metallurgy of welding. 4th ed. London: George Allen & Unwin; 1987.

27. Taylor JC, Hondrum OS, Prasad A. Effects of joints configuration for the arc welding of cast Ti-6Al-4V alloy rods in argon. J Prosthet Dent. 1998;79:291- 97. http://dx.doi.org/10.1016/S0022-3913(98)70240-9

28. Callister WD Jr. Materials science and engeneering: an introduction. 6th ed . New York: John Wiley & Sons; 2003.

29. Sugahara T, Moura Neto C, Reis DAP, Piorino Neto, F. Caracterização mecânica e miscroestrutural da liga Ti-6AL-4V tratada termicamente. Revista Brasileira de Aplicações à Vacuo. 2008;27:195-9.
588019417f8c9d0a098b506e rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections