Biomateriais a base de quitosana na correção de defeitos ósseos críticos criados em calvaria de ratos: avaliação radiográfica
Chitosan-based biomaterials used in critical-size bone defects: radiographic study in rat’s calvaria
Spin-Neto, Rubens; Coletti, Felipe Leite; Freitas, Rubens Moreno de; Pavone, Chaíne; Campana-Filho, Sérgio Paulo; Marcantonio, Rosemary Adriana Chiérici
http://dx.doi.org/10.1590/S1807-25772012000500003
Rev. odontol. UNESP, vol.41, n5, p.312-317, 2012
Abstract
This study evaluated, using digital radiographic images, the action of chitosan and chitosan hydrochloride biomaterials, with both low and high molecular weight, used in the correction of critical-size bone defects (CSBD’s) in rat’s calvaria. Material and method: CSBD’s with 8 mm in diameter were surgically created in the calvaria of 50 Holtzman rats and these were filled with a blood clot (Control), low molecular weight chitosan, high molecular weight chitosan, low molecular weight chitosan hydrochloride and high molecular weight chitosan hydrochloride, for a total of 10 animals, which were divided into two experimental periods (15 and 60 days), for each biomaterial. The radiographic evaluation was made using two digital radiographs of the animal’s skull: one taken right after the bone defect was created and the other at the moment of the sacrifice, providing the initial and the final radiographic bone density in the area of the defect, which were compared. Result: Analysis of radiographic bone density indicated that the increase in the radiographic bone density of the CSBD’s treated with the proposed biomaterials, in either molecular weight, in both observed periods, where similar to those found in control group. Conclusion: Tested chitosan-based biomaterials were not able to enhance the radiographic density in the CSBD’s made in rat’s calvaria.
Keywords
Biocompatible materials, bone regeneration, chitosan, chitin, radiographic image interpretation computer-assisted.
Resumo
Este estudo avaliou através de imagens radiográficas digitais, a ação de biomateriais de quitosana e de cloridrato de quitosana, com baixo e alto peso molecular, utilizados na correção de defeitos ósseos de tamanho crítico (DOTC)em calvária de ratos. Material e método: DOTCs com 8 mm de diâmetro foram criados cirurgicamente na calvária de 50 ratos Holtzman. Em 10 animais o defeito foi preenchido foram preenchidos com coágulo sanguíneo (controle negativo). Os 40 animais restantes foram divididos de acordo com o biomaterial utilizado no preenchimento do defeito (quitosana de baixo peso e de alto peso molecular, e cloridrato de quitosana de baixo e de alto peso molecular), e foram avaliados em dois períodos experimentais (15 e 60 dias), totalizando 5 animais/biomaterial/período de avaliação. Resultado: A avaliação radiográfica foi feita utilizando duas radiografias digitais do crânio do animal: uma tomada logo após o defeito ósseo ser criado e a outra no momento do sacrifício. Nessas imagens, foi avaliada a densidade óssea radiográfica inicial e a final na área do defeito, que foram comparadas. As análises na densidade óssea radiográfica indicaram aumento da densidade óssea radiográfica dos DOTCs tratados para todos os biomateriais testados, em ambos os períodos. Resultados semelhantes foram encontrados no grupo controle. Conclusão: Conclui-se que os biomateriais de quitosana testados não foram capazes de aumentar a densidade radiográfica em DOTC realizados em calvária de ratos.
Palavras-chave
Materiais biocompatíveis, regeneração óssea, quitosana, quitina, interpretação de imagem radiográfica assistida por computador.
References
1. Yamada Y, Ueda M, Naiki T, Nagasaka T. Tissue-engineered injectable bone regeneration for osseointegrated dental implants. Clin Oral Implants Res. 2004; 15: 589-97. PMid:15355402. http://dx.doi.org/10.1111/j.1600-0501.2004.01038.x
2. Buser D, Dula K, Hess D, Hirt HP, Belser UC. Localized ridge augmentation with autografts and barrier membranes. Periodontol 2000. 1999;19: 151-63. PMid:10321222. http://dx.doi.org/10.1111/j.1600-0757.1999.tb00153.x
3. Summers BN, Eisenstein SM. Donor site pain from the ilium. A complication of lumbar spine fusion. J Bone Joint Surg Br. 1989; 71: 677‑80. PMid:2768321.
4. Gross JS. Bone grafting materials for dental applications: a practical guide. Compend Contin Educ Dent. 1997; 18: 1013-8, 20-2, 24, passim; quiz.
5. Boss JH, Shajrawi I, Aunullah J, Mendes DG. The relativity of biocompatibility. A critique of the concept of biocompatibility. Isr J Med Sci. 1995; 31: 203-9. PMid:7721555.
6. Service RF. Tissue engineers build new bone. Science. 2000; 289(5484): 1498-500. PMid:10991738. http://dx.doi.org/10.1126/science.289.5484.1498
7. Park JS, Choi SH, Moon IS, Cho KS, Chai JK, Kim CK. Eight-week histological analysis on the effect of chitosan on surgically created one-wall intrabony defects in beagle dogs. J Clin Periodontol. 2003; 30: 443-53. PMid:12716338. http://dx.doi.org/10.1034/j.1600-051X.2003.10283.x
8. Senel S, McClure SJ. Potential applications of chitosan in veterinary medicine. Adv Drug Deliv Rev. 2004; 56: 1467-80. PMid:15191793. http://dx.doi.org/10.1016/j.addr.2004.02.007
9. Senel S, Ikinci G, Kas S, Yousefi-Rad A, Sargon MF, Hincal AA. Chitosan films and hydrogels of chlorhexidine gluconate for oral mucosal delivery. Int J Pharm. 2000; 193: 197-203. http://dx.doi.org/10.1016/S0378-5173(99)00334-8
10. Shahidi F, Abuzaytoun R. Chitin, chitosan, and co-products: chemistry, production, applications, and health effects. Adv Food Nutr Res. 2005; 49: 93-135. http://dx.doi.org/10.1016/S1043-4526(05)49003-8
11. Singla AK, Chawla M. Chitosan: some pharmaceutical and biological aspects--an update. J Pharm Pharmacol. 2001; 53: 1047-67. PMid:11518015. http://dx.doi.org/10.1211/0022357011776441
12. Muzzarelli RA, Mattioli-Belmonte M, Tietz C, Biagini R, Ferioli G, Brunelli MA, et al. Stimulatory effect on bone formation exerted by a modified chitosan. Biomaterials. 1994; 15: 1075-81. http://dx.doi.org/10.1016/0142-9612(94)90093-0
13. Chatelet C, Damour O, Domard A. Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials. 2001; 22: 261-8. http://dx.doi.org/10.1016/S0142-9612(00)00183-6
14. Ueno H, Murakami M, Okumura M, Kadosawa T, Uede T, Fujinaga T. Chitosan accelerates the production of osteopontin from polymorphonuclear leukocytes. Biomaterials. 2001; 22: 1667-73. http://dx.doi.org/10.1016/S0142-9612(00)00328-8
15. Ueno H, Yamada H, Tanaka I, Kaba N, Matsuura M, Okumura M, et al. Accelerating effects of chitosan for healing at early phase of experimental open wound in dogs. Biomaterials. 1999; 20: 1407-14. http://dx.doi.org/10.1016/S0142-9612(99)00046-0
16. Giro G, Goncalves D, Sakakura CE, Pereira RM, Marcantonio Junior E, Orrico SR. Influence of estrogen deficiency and its treatment with alendronate and estrogen on bone density around osseointegrated implants: radiographic study in female rats. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008; 105: 162-7. PMid:18230387. http://dx.doi.org/10.1016/j.tripleo.2007.06.010
17. Sakakura CE, Giro G, Goncalves D, Pereira RM, Orrico SR, Marcantonio E, Jr. Radiographic assessment of bone density around integrated titanium implants after ovariectomy in rats. Clin Oral Implants Res. 2006; 17: 134-8. PMid:16584408. http://dx.doi.org/10.1111/j.1600-0501.2005.01224.x
18. Okamoto Y, Shibazaki K, Minami S, Matsuhashi A, Tanioka S, Shigemasa Y. Evaluation of chitin and chitosan on open would healing in dogs. J Vet Med Sci. 1995; 57: 851-4. PMid:8593291. http://dx.doi.org/10.1292/jvms.57.851
19. Spin-Neto R, de Freitas RM, Pavone C, Cardoso MB, Campana-Filho SP, Marcantonio RA, et al. Histological evaluation of chitosan-based biomaterials used for the correction of critical size defects in rat's calvaria. J Biomed Mater Res A. 2010; 93: 107-14. PMid:19536827.
20. Kosaka T, Kaneko Y, Nakada Y, Matsuura M, Tanaka S. Effect of chitosan implantation on activation of canine macrophages and polymorphonuclear cells after surgical stress. J Vet Med Sci. 1996; 58: 963-7. PMid:8915995. http://dx.doi.org/10.1292/jvms.58.10_963
21. Asikainen AJ, Hagstrom J, Sorsa T, Noponen J, Kellomaki M, Juuti H, et al. Soft tissue reactions to bioactive glass 13-93 combined with chitosan. J Biomed Mater Res A. 2007; 83: 530-7. PMid:17508414. http://dx.doi.org/10.1002/jbm.a.31225
22. Mori T, Okumura M, Matsuura M, Ueno K, Tokura S, Okamoto Y, et al. Effects of chitin and its derivatives on the proliferation and cytokine production of fibroblasts in vitro. Biomaterials. 1997; 18: 947-51. http://dx.doi.org/10.1016/S0142-9612(97)00017-3
23. Triplett RG, Schow SR. Surgical advances in implant dentistry. Tex Dent J. 1994; 111 (10):12-3, 5-7, 9.