Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/doi/10.1590/1807-2577.20250034
Revista de Odontologia da UNESP
Original Article

Effects of ionizing radiation on healing after experimental periodontitis

Efeitos da radiação ionizante na cicatrização após periodontite experimental

Juliana Simeão BORGES; Isabella Santos PAULA; Roberta de Oliveira ALVES; Guilherme José Pimentel Lopes de OLIVEIRA; Sérgio Vitorino CARDOSO; Rubens SPIN-NETO; Priscilla Barbosa Ferreira SOARES

Downloads: 0
Views: 16

Abstract

Resumo: Introdução: Adoença periodontal é uma condição inflamatória crônica causada pela colonização de biofilmes subgengivais altamente complexos nas superfícies dentárias, que afeta o periodonto e o osso alveolar.

Objetivo: Investigar os efeitos da radiação ionizante na reparação dos tecidos periodontais após tratamento da periodontite experimental em ratos.

Material e método: A doença periodontal foi induzida por ligaduras de seda ao redor dos segundos molares inferiores por sete dias, utilizando o lado contralateral como controle. Vinte e oito ratos Wistar machos foram distribuídos em quatro grupos (n=7): não ligado e não irradiado, não ligado e irradiado, ligado e não irradiado, e ligado e irradiado. Após a remoção das ligaduras, os grupos irradiados receberam dose única de 30 Gy aplicada na região mandibular aos 7 e 20 dias. A eutanásia foi realizada após o período experimental. A microtomografia computadorizada avaliou perda óssea alveolar e fração de volume ósseo. Análises histológicas coradas em hematoxilina e eosina consideraram infiltrado inflamatório, vascularização, hiperemia, lacunas de Howship, fibrose e lacunas osteocíticas vazias. Os dados foram analisados com testes estatísticos (p<0,05).

Resultado: Animais com doença periodontal apresentaram maior perda óssea alveolar em comparação aos controles. Irradiados mostraram perda adicional em relação aos não irradiados, independentemente do tempo. Aos 20 dias, o grupo ligado e irradiado apresentou redução significativa da fração de volume ósseo. A análise histológica evidenciou infiltrado inflamatório, alterações vasculares, fibrose e maior número de lacunas osteocíticas vazias, sugerindo atraso ou comprometimento da reparação tecidual.

Conclusão: A radiação ionizante afetou negativamente a reparação periodontal, intensificando a perda óssea alveolar e a inflamação. Esses efeitos podem comprometer a cicatrização a longo prazo e interferir na recuperação óssea e de tecidos moles.

Keywords

Doenças periodontais, microtomografia por Raio-X, perda do osso alveolar

Resumo

Abstract: Introduction: Periodontal disease is a chronic inflammatory condition caused by the colonization of highly complex, subgingival biofilms on tooth surfaces, that affects the periodontium and alveolar bone.

Objective: This study aimed to investigate the effects of ionizing radiation on the repair of periodontal tissues after treatment of experimental periodontitis in rats.

Material and method: Periodontal disease was induced by silk ligatures placed around the second mandibular molars for seven days, with the contralateral side serving as non-ligated control. Twenty-eight male Wistar rats were randomly allocated into four groups (n=7): non-ligated and non-irradiated (control), non-ligated and irradiated, ligated and non-irradiated, and ligated and irradiated. After ligature removal, animals in the irradiated groups received a single dose of 30 Gy of ionizing radiation applied to the mandibular region at 7 and 20 days. Euthanasia was performed after the experimental period. Micro-computed tomography was used to evaluate alveolar bone loss and bone volume fraction. Histological analyses with hematoxylin and eosin included inflammatory infiltrate, vascularization, hyperemia, Howship’s lacunae, fibrosis, and empty osteocytic lacunae. Data were analyzed with statistical tests, significance set at p<0.05.

Result: Animals with periodontal disease showed greater alveolar bone loss compared to controls. Irradiated animals exhibited additional loss relative to non-irradiated ones, regardless of time point. At 20 days, the ligated and irradiated group displayed a significant reduction in bone volume fraction. Histological analysis revealed inflammatory infiltrate, vascular changes, fibrosis, and higher numbers of empty osteocytic lacunae in irradiated groups, suggesting delayed or impaired repair mechanisms.

Conclusion: Ionizing radiation negatively affected periodontal repair by intensifying alveolar bone loss and inflammation. These effects may compromise long-term periodontal healing and interfere with bone and soft tissue recovery.
 

Palavras-chave

Periodontal diseases, X-Ray microtomography, alveolar bone loss

References

1 Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat Rev Dis Primers. 2017 Jun;3(1):17038. https://doi.org/10.1038/nrdp.2017.38. PMid:28805207.

2 Pereira SRA, de Oliveira ICV, Vieira RC, Silva MML, Branco-de-Almeida LS, Rodrigues VP. Effect of photobiomodulation therapy as an adjunct to scaling and root planing in a rat model of ligature-induced periodontitis: a histological and radiographic study. Lasers Med Sci. 2020 Jun;35(4):991-8. https://doi.org/10.1007/s10103-020-02952-0. PMid:31955304.

3 Sinha S, Sonoo PR, Siddhartha R, Singh SK, Singh A. Effect of conventional periodontal treatment (Scaling and Root Planing) on type-2 diabetic patient with moderate generalized chronic periodontitis: a clinical study. J Pharm Bioallied Sci. 2021 Jun;13(Suppl 1):S706-10. https://doi.org/10.4103/jpbs.JPBS_692_20. PMid:34447186.

4 Bhuyan R, Bhuyan SK, Mohanty JN, Das S, Juliana N, Juliana IF. Periodontitis and its inflammatory changes linked to various systemic diseases: a review of its underlying mechanisms. Biomedicines. 2022 Oct;10(10):2659. https://doi.org/10.3390/biomedicines10102659. PMid:36289921.

5 Daniel M, Luby AO, Buchman L, Buchman SR. Overcoming nuclear winter: the cutting-edge science of bone healing and regeneration in irradiated fields. Plast Reconstr Surg Glob Open. 2021 Jun;9(6):e3605. https://doi.org/10.1097/GOX.0000000000003605. PMid:34235033.

6 Chen HHW, Kuo MT. Improving radiotherapy in cancer treatment: Promises and challenges. Oncotarget. 2017 Jun;8(37):62742-58. https://doi.org/10.18632/oncotarget.18409. PMid:28977985.

7 Sroussi HY, Epstein JB, Bensadoun RJ, Saunders DP, Lalla RV, Migliorati CA, et al. Common oral complications of head and neck cancer radiation therapy: mucositis, infections, saliva change, fibrosis, sensory dysfunctions, dental caries, periodontal disease, and osteoradionecrosis. Cancer Med. 2017 Dec;6(12):2918-31. https://doi.org/10.1002/cam4.1221. PMid:29071801.

8 Brandt E, Keskin M, Räisänen IT, Tervahartiala T, Mäkitie A, Harmankaya İ, et al. Induction of collagenolytic MMP-8 and -9 tissue destruction cascade in mouth by head and neck cancer radiotherapy: a cohort study. Biomedicines. 2023 Dec;12(1):27. https://doi.org/10.3390/biomedicines12010027. PMid:38275388.

9 Zambrano LMG, Brandao DA, Rocha FRG, Marsiglio RP, Longo IB, Primo FL, et al. Local administration of curcumin-loaded nanoparticles effectively inhibits inflammation and bone resorption associated with experimental periodontal disease. Sci Rep. 2018 Apr;8(1):6652. https://doi.org/10.1038/s41598-018-24866-2. PMid:29703905.

10 Irie MS, Mendes EM, Borges JS, Osuna LG, Rabelo GD, Soares PB. Periodontal therapy for patients before and after radiotherapy: A review of the literature and topics of interest for clinicians. Med Oral Patol Oral Cir Bucal. 2018 Sep;23(5):e524-30. https://doi.org/10.4317/medoral.22474. PMid:30148466.

11 de Molon RS, Park CH, Jin Q, Sugai J, Cirelli JA. Characterization of ligature-induced experimental periodontitis. Microsc Res Tech. 2018 Dec;81(12):1412-21. https://doi.org/10.1002/jemt.23101. PMid:30351474.

12 Köse O, Arabaci T, Kizildag A, Erdemci B, Özkal Eminoğlu D, Gedikli S, et al. Melatonin prevents radiation-induced oxidative stress and periodontal tissue breakdown in irradiated rats with experimental periodontitis. J Periodontal Res. 2017 Jun;52(3):438-46. https://doi.org/10.1111/jre.12409. PMid:27510437.

13 Garcia VG, Longo M, Gualberto Júnior EC, Bosco AF, Nagata MJ, Ervolino E, et al. Effect of the concentration of phenothiazine photosensitizers in antimicrobial photodynamic therapy on bone loss and the immune inflammatory response of induced periodontitis in rats. J Periodontal Res. 2014 Oct;49(5):584-94. https://doi.org/10.1111/jre.12138. PMid:24206053.

14 Abe T, Hajishengallis G. Optimization of the ligature-induced periodontitis model in mice. J Immunol Methods. 2013 Aug;394(1-2):49-54. https://doi.org/10.1016/j.jim.2013.05.002. PMid:23672778.

15 Borges JS, Paula IS, de Araújo Reis NT, de Lima Oliveira AP, Soares CJ, Soares PBF. Effects of different doses of ionizing radiation on alveolar bone repair in post-extraction tooth socket: an experimental study in rats. Clin Oral Investig. 2023;27(12):7583-93. https://doi.org/10.1007/s00784-023-05348-w. PMid:37906304.

16 Sønstevold T, Johannessen AC, Stuhr L. A rat model of radiation injury in the mandibular area. Radiat Oncol. 2015;10(1):129. https://doi.org/10.1186/s13014-015-0432-6. PMid:26050968.

17 Cheng WC, Huang RY, Chiang CY, Chen JK, Liu CH, Chu CL, et al. Ameliorative effect of quercetin on the destruction caused by experimental periodontitis in rats. J Periodontal Res. 2010 Dec;45(6):788-95. https://doi.org/10.1111/j.1600-0765.2010.01301.x. PMid:20663021.

18 Aydinyurt HS, Sancak T, Taskin C, Basbugan Y, Akinci L. Effects of ınjectable platelet-rich fibrin in experimental periodontitis in rats. Odontology. 2021 Apr;109(2):422-32. https://doi.org/10.1007/s10266-020-00557-1. PMid:33068206.

19 Toker H, Ozan F, Ozer H, Ozdemir H, Eren K, Yeler H. A morphometric and histopathologic evaluation of the effects of propolis on alveolar bone loss in experimental periodontitis in rats. J Periodontol. 2008 Jun;79(6):1089-94. https://doi.org/10.1902/jop.2008.070462. PMid:18533788.

20 Leite de Marcelos PGC, Perez DEDCP, Soares DM, de Araújo SS, Evêncio LB, Pontual MLDA, et al. The effects of zoledronic acid on the progression of experimental periodontitis in rats: histological and microtomographic analyses. J Periodontal Implant Sci. 2021 Aug;51(4):264-75. https://doi.org/10.5051/jpis.2001100055. PMid:34387046.

21 The Jamovi Project. Jamovi (version 1.6) [Internet]. Sydney: The jamovi project; 2025 [cited 2025 Oct 22]. Available from: https://www.jamovi.org

22 Molon RS, Mascarenhas VI, de Avila ED, Finoti LS, Toffoli GB, Spolidorio DM, et al. Long-term evaluation of oral gavage with periodontopathogens or ligature induction of experimental periodontal disease in mice. Clin Oral Investig. 2016 Jul;20(6):1203-16. https://doi.org/10.1007/s00784-015-1607-0. PMid:26411857.

23 Mendes EM, Irie MS, Rabelo GD, Borges JS, Dechichi P, Diniz RS, et al. Effects of ionizing radiation on woven bone: influence on the osteocyte lacunar network, collagen maturation, and microarchitecture. Clin Oral Investig. 2020;24(8):2763-71. https://doi.org/10.1007/s00784-019-03138-x. PMid:31732880.

24 Alves RO, Oliveira GJPL, Oliveira RC, Limirio PHJO, Claudino M, Zanetta-Barbosa D, et al. Ionizing radiation effects on osseointegration: a pre-clinical study. Braz Oral Res. 2024 Dec;38:e112. https://doi.org/10.1590/1807-3107bor-2024.vol38.0112. PMid:39661793.

25 Marchesan J, Girnary MS, Jing L, Miao MZ, Zhang S, Sun L, et al. An experimental murine model to study periodontitis. Nat Protoc. 2018 Oct;13(10):2247-67. https://doi.org/10.1038/s41596-018-0035-4. PMid:30218100.

26 Mendes EM, Irie MS, Rabelo GD, Borges JS, Dechichi P, Diniz RS, et al. Effects of ionizing radiation on woven bone: influence on the osteocyte lacunar network, collagen maturation, and microarchitecture. Clin Oral Investig. 2020 Aug;24(8):2763-71. https://doi.org/10.1007/s00784-019-03138-x. PMid:31732880.

27 Macedo PD, Corbi ST, de Oliveira GJPL, Perussi JR, Ribeiro AO, Marcantonio RAC. Hypericin-glucamine antimicrobial photodynamic therapy in the progression of experimentally induced periodontal disease in rats. Photodiagnosis Photodyn Ther. 2019 Mar;25:43-9. https://doi.org/10.1016/j.pdpdt.2018.11.003. PMid:30399457.

28 Miessi DMJ, Garcia VG, Ervolino E, Scalet V, Nuernberg MAA, Dos Santos Neto OM, et al. Lactobacillus reuteri associated with scaling and root planing in the treatment of periodontitis in rats submitted to chemotherapy. Arch Oral Biol. 2020 Sep;117:104825. https://doi.org/10.1016/j.archoralbio.2020.104825. PMid:32622257.

29 Tchanque-Fossuo CN, Monson LA, Farberg AS, Donneys A, Zehtabzadeh AJ, Razdolsky ER, et al. Dose-response effect of human equivalent radiation in the murine mandible: part I. A histomorphometric assessment. Plast Reconstr Surg. 2011 Jul;128(1):114-21. https://doi.org/10.1097/PRS.0b013e31821741d4. PMid:21701328.

30 Bléry P, Espitalier F, Hays A, Crauste E, Demarquay C, Pilet P, et al. Development of mandibular osteoradionecrosis in rats: importance of dental extraction. J Craniomaxillofac Surg. 2015 Nov;43(9):1829-36. https://doi.org/10.1016/j.jcms.2015.08.016. PMid:26433771.

31 Oliveira GJ, Paula LG, Souza JA, Spin-Neto R, Stavropoulos A, Marcantonio RA. Effects of avocado/soybean unsaponifiables (ASU) on the treatment of ligature-induced periodontitis in rats. Braz Oral Res. 2017 Apr;31:e28. https://doi.org/10.1590/1807-3107bor-2017.vol31.0028. PMid:28403331.
 


Submitted date:
10/22/2025

Accepted date:
10/23/2025

695e6cc2a953957c64067083 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections