Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/doi/10.1590/1807-2577.20250022
Revista de Odontologia da UNESP
Original Article

Avaliação físico-química de superfícies de titânio com nanotopografia após métodos mecânicos de descontaminação: estudo in vitro

Physical and chemical evaluation of titanium surfaces with nanotopography using mechanical decontamination methods: in vitro study

Viviane Maria RANKEL; Nelson Luiz de MACEDO-JÚNIOR; Edson GRACIA-NETO; Caio Vinicius Gonçalves ROMAN-TORRES; Humberto Osvaldo SCHWARTZ-FILHO

Downloads: 0
Views: 18

Resumo

Resumo: Introdução: Métodos de descontaminação utilizados em implantes podem exercer impacto direto sobre as superfícies de titânio, gerando alterações físico-químicas decorrentes da instrumentação mecânica.

Objetivo: O objetivo do estudo foi analisar, pelas técnicas de microscopia eletrônica de varredura (MEV) e energia dispersiva de raios X (EDS), a modificação de superfície de titânio, tanto física como quimicamente, após a ação de métodos de instrumentação mecânica preconizados para descontaminação de implantes.

Material e método: Quinze discos de titânio foram divididos em cinco grupos, tendo três discos cada grupo, conforme a forma de tratamento (grupos: controle, cureta aço inox, cureta de titânio, ultrassom e laser de diodo). Assim, foram aplicados os diferentes métodos e feita a análise de possíveis alterações morfológicas (MEV) e de constituição química (EDS) nas amostras.

Resultado: Em relação à morfologia, comparando-se ao grupo controle, os resultados mostraram uma alteração mais significativa no grupo em que o ultrassom foi utilizado. As curetas de titânio causaram um desgaste maior sobre as superfícies quando comparadas às curetas aço inox. Quimicamente, notou-se que o percentual de presença de elementos como Ti, O, C, F, Fe, Cr, Al e Si podem variar de acordo com os instrumentos aplicados nas superfícies. Os discos instrumentados com ultrassom apresentaram uma diminuição nos valores de Ti, aumento de O e geraram uma deposição de Fe e Cr. O uso de cureta de aço inox, cureta de titânio e a aplicação de laser não apresentaram diferenças significantes quando comparados ao controle.

Conclusão: Conclui-se que as diferentes formas de instrumentação mecânica avaliadas causam diferentes alterações, podendo modificar física e quimicamente as superfícies de titânio após sua aplicação.

Palavras-chave

Peri-implantite, implantes dentários, superfície

Abstract

Abstract: Introduction: Implant decontamination methods can directly affect titanium surfaces, causing physicochemical alterations resulting from mechanical instrumentation.

Objective: The objective was to analyze, using scanning electron microscopy (SEM) and energy-dispersive x-ray (EDS), the surface of titanium discs, both physically and chemically, after the action of mechanical instrumentation used for implant decontamination.

Material and method: Fifteen titanium discs were divided into five groups, each with three discs, according to the decontamination method (control group, stainless steel curette, titanium curette, ultrasound, and diode laser). Thus, decontamination of the discs was simulated for subsequent morphological analysis using SEM and chemical composition using EDS.

Result: Regarding morphology, compared to the control group, the results showed a more significant change in the group where ultrasound was used. Titanium curettes showed greater surface wear compared to stainless steel curettes. Chemically, the results showed that the percentage of elements such as Ti, O, C, F, Fe, Cr, Al, and Si can vary depending on the instruments applied to the surfaces. Ultrasonic-instrumented discs showed a decrease in Ti values, an increase in O, and generated deposition of Fe and Cr. The curette and laser groups showed no significant differences when compared to the control.

Conclusion: It can be concluded that the different forms of mechanical instrumentation produce distinct alterations, potentially modifying titanium surfaces both physically and chemically after their application.
 

Keywords

Peri-implantitis, dental implants, surface

References

1 Tomasi C, Derks J. Etiology, occurrence, and consequences of implant loss. Periodontol 2000. 2022 Feb;88(1):13-35. https://doi.org/10.1111/prd.12408. PMid:35103324.

2 Vignoletti F, Di Domenico GL, Di Martino M, Montero E, de Sanctis M. Prevalence and risk indicators of peri-implantitis in a sample of university-based dental patients in Italy: a cross-sectional study. J Clin Periodontol. 2019 May;46(5):597-605. https://doi.org/10.1111/jcpe.13111. PMid:30980410.

3 Schwarz F, Ramanauskaite A. It is all about peri-implant tissue health. Periodontol 2000. 2022 Feb;88(1):9-12. https://doi.org/10.1111/prd.12407. PMid:35103327.

4 Campos AAD, Gontijo TRA, Oliveira DF. Fatores relacionados à perda precoce de implantes dentários. Research. Soc Dev. 2022;11(7):e19411729775. https://doi.org/10.33448/rsd-v11i7.29775.

5 Socransky SS, Haffajee AD. Periodontal microbial ecology. Periodontol 2000. 2005;38(1):135-87. https://doi.org/10.1111/j.1600-0757.2005.00107.x. PMid:15853940.

6 Di Spirito F, Giordano F, Di Palo MP, D’Ambrosio F, Scognamiglio B, Sangiovanni G, et al. Microbiota of peri-implant healthy tissues, peri-implant mucositis, and peri-implantitis: a comprehensive review. Microorganisms. 2024;12(6):1137. https://doi.org/10.3390/microorganisms12061137. PMid:38930519.

7 Cannatà D, Galdi M, Russo A, Scelza C, Michelotti A, Martina S. Reliability and educational suitability of TikTok videos as a source of information on sleep and awake bruxism: a cross-sectional analysis. J Oral Rehabil. 2025;52(4):434-42. https://doi.org/10.1111/joor.13874. PMid:39428343.

8 Di Spirito F. Oral-systemic health and disorders: latest prospects on oral antisepsis. Appl Sci (Basel). 2022;12(16):8185. https://doi.org/10.3390/app12168185.

9 Del Amo FSL, Yu SH, Sammartino G, Sculean A, Zucchelli G, Rasperini G, et al. Peri-implant soft tissue management: Cairo Opinion Consensus Conference. Int J Environ Res Public Health. 2020 Mar;17(7):2281. https://doi.org/10.3390/ijerph17072281. PMid:32231082.

10 Poppolo Deus F, Ouanounou A. Chlorhexidine in dentistry: pharmacology, uses, and adverse effects. Int Dent J. 2022 Jun;72(3):269-77. https://doi.org/10.1016/j.identj.2022.01.005. PMid:35287956.

11 Manfredini M, Poli PP, Beretta M, Pellegrini M, Salina FE, Maiorana C. Polydeoxyribonucleotides pre-clinical findings in bone healing: a scoping review. Dent J. 2023 Dec;11(12):280. https://doi.org/10.3390/dj11120280. PMid:38132418.

12 Di Spirito F, Pisano M, Di Palo MP, Salzano F, Rupe A, Fiorino A, et al. Potential impact of microbial variations after peri-implantitis treatment on peri-implant clinical, radiographic, and crevicular parameters: a systematic review. Dent J. 2024 Dec;12(12):414. https://doi.org/10.3390/dj12120414. PMid:39727471.

13 Baima G, Citterio F, Romandini M, Romano F, Mariani GM, Buduneli N, et al. Surface decontamination protocols for surgical treatment of peri-implantitis: a systematic review with meta-analysis. Clin Oral Implants Res. 2022 Nov;33(11):1069-86. https://doi.org/10.1111/clr.13992. PMid:36017594.

14 Hägi TT, Hofmänner P, Eick S, Donnet M, Salvi GE, Sculean A, et al. The effects of erythritol air-polishing powder on microbiologic and clinical outcomes during supportive periodontal therapy: Six-month results of a randomized controlled clinical trial. Quintessence Int. 2015 Jan;46(1):31-41. https://doi.org/10.3290/j.qi.a32817. PMid:25262675.

15 Liu S, Li M, Yu J. Does chlorhexidine improve outcomes in non-surgical management of peri-implant mucositis or peri-implantitis?: a systematic review and meta-analysis. Med Oral Patol Oral Cir Bucal. 2020 Sep;25(5):e608-15. https://doi.org/10.4317/medoral.23633. PMid:32683389.

16 D’Ambrosio F, Di Spirito F, De Caro F, Lanza A, Passarella D, Sbordone L. Adherence to antibiotic prescription of dental patients: the other side of the antimicrobial resistance. Healthcare. 2022 Aug;10(9):1636. https://doi.org/10.3390/healthcare10091636. PMid:36141247.

17 Di Spirito F, Scelza G, Fornara R, Giordano F, Rosa D, Amato A. Post-operative endodontic pain management: an overview of systematic reviews on post-operatively administered oral medications and integrated evidence-based clinical recommendations. Healthcare. 2022 Apr;10(5):760. https://doi.org/10.3390/healthcare10050760. PMid:35627897.

18 Capuano N, Amato A, Dell’Annunziata F, Giordano F, Folliero V, Di Spirito F, et al. Nanoparticles and their antibacterial application in endodontics. Antibiotics. 2023 Dec;12(12):1690. https://doi.org/10.3390/antibiotics12121690. PMid:38136724.

19 Sousa V, Mardas N, Spratt D, Hassan IA, Walters NJ, Beltrán V, et al. The effect of microcosm biofilm decontamination on surface topography, chemistry, and biocompatibility dynamics of implant titanium surfaces. Int J Mol Sci. 2022 Sep;23(17):10033. https://doi.org/10.3390/ijms231710033. PMid:36077428.

20 Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res. 2009;20(s4 Suppl 4):172-84. https://doi.org/10.1111/j.1600-0501.2009.01775.x. PMid:19663964.

21 Gittens RA, Olivares-Navarrete R, Schwartz Z, Boyan BD. Implant osseointegration and the role of microroughness and nanostructures: lessons for spine implants. Acta Biomater. 2014 Aug;10(8):3363-71. https://doi.org/10.1016/j.actbio.2014.03.037. PMid:24721613.

22 Gittens RA, Scheideler L, Rupp F, Hyzy SL, Geis-Gerstorfer J, Schwartz Z, et al. A review on the wettability of dental implant surfaces II: Biological and clinical aspects. Acta Biomater. 2014 Jul;10(7):2907-18. https://doi.org/10.1016/j.actbio.2014.03.032. PMid:24709541.

23 Gittens RA, McLachlan T, Olivares-Navarrete R, Cai Y, Berner S, Tannenbaum R, et al. The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials. 2011 May;32(13):3395-403. https://doi.org/10.1016/j.biomaterials.2011.01.029. PMid:21310480.

24 Gittens RA, Olivares-Navarrete R, Tannenbaum R, Boyan BD, Schwartz Z. Electrical implications of corrosion for osseointegration of titanium implants. J Dent Res. 2011 Dec;90(12):1389-97. https://doi.org/10.1177/0022034511408428. PMid:21555775.

25 Stavropoulos A, Bertl K, Winning L, Polyzois I. What is the influence of implant surface characteristics and/or implant material on the incidence and progression of peri-implantitis? A systematic literature review. Clin Oral Implants Res. 2021 Oct;32(S21 Suppl 21):203-29. https://doi.org/10.1111/clr.13859. PMid:34642989.

26 Nanci A, Wuest JD, Peru L, Brunet P, Sharma V, Zalzal S, et al. Chemical modification of titanium surfaces for covalent attachment of biological molecules. J Biomed Mater Res. 1998 May;40(2):324-35. https://doi.org/10.1002/(SICI)1097-4636(199805)40:2<324::AID-JBM18>3.0.CO;2-L. PMid:9549628.

27 Schwartz-Filho HO, Martins TR, Sano PR, Araújo MT, Chan DCH, Saldanha NR, et al. Nanotopography and oral bacterial adhesion on titanium surfaces: in vitro and in vivo studies. Braz Oral Res. 2024 Mar;38:e021. https://doi.org/10.1590/1807-3107bor-2024.vol38.0021. PMid:38477807.

28 Schwartz-Filho HO, Morandini AC, Ramos-Junior ES, Jimbo R, Santos CF, Marcantonio E Jr, et al. Titanium surfaces with nanotopography modulate cytokine production in cultured human gingival fibroblasts. J Biomed Mater Res A. 2012 Oct;100(10):2629-36. https://doi.org/10.1002/jbm.a.34200. PMid:22615216.

29 Vyas N, Grewal M, Kuehne SA, Sammons RL, Walmsley AD. High speed imaging of biofilm removal from a dental implant model using ultrasonic cavitation. Dent Mater. 2020 Jun;36(6):733-43. https://doi.org/10.1016/j.dental.2020.03.003. PMid:32299665.

30 Hakki SS, Tatar G, Dundar N, Demiralp B. The effect of different cleaning methods on the surface and temperature of failed titanium implants: an in vitro study. Lasers Med Sci. 2017 Apr;32(3):563-71. https://doi.org/10.1007/s10103-017-2149-2. PMid:28160204.

31 Tong Z, Fu R, Zhu W, Shi J, Yu M, Si M. Changes in the surface topography and element proportion of clinically failed SLA implants after in vitro debridement by different methods. Clin Oral Implants Res. 2021 Mar;32(3):263-73. https://doi.org/10.1111/clr.13697. PMid:33314381.

32 Romanos GE, Javed F, Delgado-Ruiz RA, Calvo-Guirado JL. Peri-implant diseases: a review of treatment interventions. Dent Clin North Am. 2015 Jan;59(1):157-78. https://doi.org/10.1016/j.cden.2014.08.002. PMid:25434564.

33 Chehroudi B, Gould TR, Brunette DM. Effects of a grooved titanium-coated implant surface on epithelial cell behavior in vitro and in vivo. J Biomed Mater Res. 1989 Sep;23(9):1067-85. https://doi.org/10.1002/jbm.820230907. PMid:2777834.

34 Rodríguez-Hernández AG, Juárez A, Engel E, Gil FJ. Streptococcus sanguinis adhesion on titanium rough surfaces: effect of shot-blasting particles. J Mater Sci Mater Med. 2011 Aug;22(8):1913-22. https://doi.org/10.1007/s10856-011-4366-8. PMid:21656279.

35 Covani U, Marconcini S, Crespi R, Barone A. Bacterial plaque colonization around dental implant surfaces. Implant Dent. 2006 Sep;15(3):298-304. https://doi.org/10.1097/01.id.0000226823.58425.19. PMid:16966904.

36 Louropoulou A, Slot DE, Van der Weijden F. Influence of mechanical instruments on the biocompatibility of titanium dental implants surfaces: a systematic review. Clin Oral Implants Res. 2015 Jul;26(7):841-50. https://doi.org/10.1111/clr.12365. PMid:24641774.

37 Bowers KT, Keller JC, Randolph BA, Wick DG, Michaels CM. Optimization of surface micromorphology for enhanced osteoblast responses in vitro. Int J Oral Maxillofac Implants. 1992;7(3):302-10. PMid:1289255.

38 Köunönen M, Hormia M, Kivilahti J, Hautaniemi J, Thesleff I. Effect of surface processing on the attachment, orientation, and proliferation of human gingival fibroblasts on titanium. J Biomed Mater Res. 1992 Oct;26(10):1325-41. https://doi.org/10.1002/jbm.820261006. PMid:1429750.

39 Brunette DM, Chehroudi B. The effects of the surface topography of micromachined titanium substrata on cell behavior in vitro and in vivo. J Biomech Eng. 1999 Feb;121(1):49-57. https://doi.org/10.1115/1.2798042. PMid:10080089.

40 Chehroudi B, Gould TR, Brunette DM. Effects of a grooved titanium-coated implant surface on epithelial cell behavior in vitro and in vivo. J Biomed Mater Res. 1989 Sep;23(9):1067-85. https://doi.org/10.1002/jbm.820230907. PMid:2777834.

41 Chehroudi B, Gould TR, Brunette DM. Titanium-coated micromachined grooves of different dimensions affect epithelial and connective-tissue cells differently in vivo. J Biomed Mater Res. 1990 Sep;24(9):1203-19. https://doi.org/10.1002/jbm.820240906. PMid:2211745.

42 Figuero E, Graziani F, Sanz I, Herrera D, Sanz M. Management of peri-implant mucositis and peri-implantitis. Periodontol 2000. 2014 Oct;66(1):255-73. https://doi.org/10.1111/prd.12049. PMid:25123773.

43 Schwarz F, Sculean A, Romanos G, Herten M, Horn N, Scherbaum W, et al. Influence of different treatment approaches on the removal of early plaque biofilms and the viability of SAOS2 osteoblasts grown on titanium implants. Clin Oral Investig. 2005 Jun;9(2):111-7. https://doi.org/10.1007/s00784-005-0305-8. PMid:15841403.

44 Hallström H, Persson GR, Lindgren S, Olofsson M, Renvert S. Systemic antibiotics and debridement of peri-implant mucositis. A randomized clinical trial. J Clin Periodontol. 2012 Jun;39(6):574-81. https://doi.org/10.1111/j.1600-051X.2012.01884.x. PMid:22571225.

45 Schwarz F, Rothamel D, Sculean A, Georg T, Scherbaum W, Becker J. Effects of an Er:YAG laser and the Vector ultrasonic system on the biocompatibility of titanium implants in cultures of human osteoblast-like cells. Clin Oral Implants Res. 2003;14(6):784-92. https://doi.org/10.1046/j.0905-7161.2003.00954.x. PMid:15015956.

46 Freitas BSL, Alves SKC, Felipe J Jr, Pereira TBF, Lucena TA, Barbosa MES, et al. The use of laser therapy in the non-surgical treatment of peri-implant lesions: literature review. Res Soc Dev. 2022;11(13):e306111335592. https://doi.org/10.33448/rsd-v11i13.35592.

47 Louro IMPOC. Peri-implantite – análise do impacto da utilização de laser no desbridamento mecânico das superfícies de titânio [dissertação]. Porto: Universidade do Porto; 2022.
 


Submitted date:
07/29/2025

Accepted date:
10/07/2025

695e6c16a953957c311179b5 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections