Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/doi/10.1590/1807-2577.10819
Revista de Odontologia da UNESP
Original Article

Avaliação da combinação de poli 
(ácido láctico-co-glicólico) e poli-isopreno (Cellprene®): estudo histológico em ratos

Evaluation of the combination of poly (Lactic-Co-Glycolic Acid) and polyisoprene (Cellprene®) materials: histological study in rats

Isabella Fernanda dos SANTOS; Luis Alberto Loureiro dos SANTOS; Cassio Rocha SCARDUELI; Luis Carlos SPOLIDORIO; Elcio MARCANTONIO-JUNIOR; Camila Chiérici MARCANTONIO; Rosemary Adriana Chiérici MARCANTONIO

Downloads: 0
Views: 461

Resumo

Resumo: Introdução: A quantidade e qualidade óssea na implantodontia é um fator de alta relevância quando se tem por objetivo instalar implantes e reabilitar pacientes. No entanto, essa disponibilidade é comprometida na maioria dos casos, havendo a necessidade da busca de novos biomateriais, membranas e substâncias para uma regeneração mais favorável. Objetivo: O objetivo deste estudo foi avaliar a resposta da neoformação óssea em defeitos críticos em calvárias de ratos utilizando scaffolds de fibras de blenda polimérica a partir de poli (ácido láctico-co-glicólico) e poli-isopreno (Cellprene®). O projeto foi aprovado pelo Comitê de Ética em Experimentação Animal.

Material e método: Neste estudo, foram utilizados 36 ratos (Rattus Norvegicus), variação albinus, Holtzman, adultos. Os animais foram submetidos à tricotomia na região da calota craniana e à confecção de defeitos ósseos circulares bilaterais com 5 mm de diâmetro. Os animais foram divididos em três grupos: GC – defeito sem colocação de biomaterial; GCol – scaffolds de colágeno (Bio-Gide, da empresa Geistlich Pharma Ag – Biomaterials); GPoli – scaffolds de fibras de blenda polimérica a partir de poli (ácido láctico-co-glicólico - Cellprene®). Cada grupo foi avaliado em quatro períodos experimentais (7, 15, 30 e 60 dias). Após esses períodos, os animais foram sacrificados, e as peças passaram por tramitação laboratorial de rotina e inclusão em parafina. Foram obtidos cortes semisseriados e corados pela técnica de hematoxilina e eosina para análise histométrica e histológica. Foi executada análise histométrica para avaliar a composição do tecido ósseo reparado (% osso). Os dados obtidos foram analisados estatisticamente com nível de significância de 95%.

Resultado: Foi verificado que o GCol apresentou maior preenchimento do defeito nos períodos de 30 e 60 dias em comparação aos GC e GPoli.

Conclusão: Os scaffolds de fibras de blenda polimérica a partir de poli (ácido láctico-co-glicólico) e poli-isopreno (Cellprene®) não apresentaram vantagens quando utilizados em defeitos críticos.

Palavras-chave

Histometria, regeneração óssea, biomaterial

Abstract

Abstract: Introduction: The bone quantity and quality in implant dentistry is a highly relevant factor when it aims the use of implants and rehabilitation in patients. However, this availability is compromised in most cases, with the need to research new biomaterials, membranes and substances for more favorable regeneration. Objective: The aim of this study was to evaluate the response of bone neoformation in critical defects in rat calvaries using polymeric blend fiber scaffolds from Poly (Lactic-Co-Glycolic Acid) and Polyisoprene (Cellprene®). The project was approved by the Animal Experimentation Ethics Committee.

Material and method: In this study 36 rats (Rattus Norvegicus), variation albinus, Holtzman, adults were used. The animals had trichotomy in the region of the skull and the confection of bilateral circular bone defects with a diameter of 5 mm. The animals were divided into 3 groups: Group GC - defect without biomaterial placement, Group GCol - collagen scaffolds (Bio-Gide, from Geistlich Pharma Ag - Biomaterials), Group GPoli - polymeric blend fiber scaffolds from Poly (Lactic-Co-Glycolic Acid)-Polyisoprene. Each group was evaluated in 4 experimental periods (7, 15, 30 and 60 days). After these periods the animals were sacrificed and the pieces underwent routine laboratory procedures and paraffin embedding. Semi-serial sections were obtained and stained by hematoxylin and eosin technique for histometric and histological analysis. Histometric analysis was performed to evaluate the composition of repaired bone tissue (% Bone). The data obtained were statistically analyzed with a significance level of 95%.

Result: It was found that the GCol group presented greater defect filling in the 30 and 60 days periods compared to the GC and GPoli groups.

Conclusion: Polymer blend fiber scaffolds from Poly (Lactic-Co-Glycolic Acid) and Polyisoprene (Cellprene®) did not have advantages when used in critical defects.
 

Keywords

Histometry, bone regeneration, biomaterial

References

Gosain AK, Song L, Yu P, Mehrara BJ, Maeda CY, Gold LI, et al. Osteogenesis in cranial defects: Reassessment of the concept of critical size and the expression of TGF-β isoforms. Plast Reconstr Surg. 2000 Aug;106(2):360-71. http://dx.doi.org/10.1097/00006534-200008000-00018. PMid:10946935.

Needleman I, Worthington HV, Giedrys-Leeper E, Tucker RJ. Guided tissue regeneration for periodontal infra-bony defects. Cochrane Database Syst Rev. 2006 Apr;(2):CD001724. http://dx.doi.org/10.1002/14651858.CD001724.pub2. PMid:16625546.

Murphy KG, Gunsolley JC. Guided tissue regeneration for the treatment of periodontal intrabony and furcation defects. A systematic review. Ann Periodontol. 2003 Dec;8(1):266-302. http://dx.doi.org/10.1902/annals.2003.8.1.266. PMid:14971257.

Laney WR. Glossary of oral and maxillofacial implants. Int J Oral Maxillofac Implants. 2017 Jul/Aug;32(4):Gi-G200. http://dx.doi.org/10.11607/jomi.2017.4.gomi. http://dx.doi.org/10.11607/jomi.2017.4.gomi.

Elgali I, Omar O, Dahlin C, Thomsen P. Guided bone regeneration: materials and biological mechanisms revisited. Eur J Oral Sci. 2017 Oct;125(5):315-37. http://dx.doi.org/10.1111/eos.12364. PMid:28833567.

Isaksson S. Aspects of bone healing and bone substitute incorporation. An experimental study in rabbit skull bone defects. Swed Dent J Suppl. 1992;84:1-46. PMid:1334579.

Liu J, Kerns DG. Mechanisms of guided bone regeneration: a review. Open Dent J. 2014 May 29;8(1):56-65. http://dx.doi.org/10.2174/1874210601408010056. PMid: 24894890.

Dimitriou R, Mataliotakis GI, Calori GM, Giannoudis PV. The role of barrier membranes for guided bone regeneration and restoration of large bone defects: Current experimental and clinical evidence. BMC Med. 2012 Jul;10(1):81. http://dx.doi.org/10.1186/1741-7015-10-81. PMid:22834465.

Kim JH, Marques DR, Faller GJ, Collares MV, Rodriguez R, Santos LA, et al. Experimental comparative study of the histotoxicity of poly(lactic-co-glycolic acid) copolymer and poly(lactic-co-glycolic acid)-poly(isoprene) blend. Polímeros. 2014 Sep;24(5):529-35. http://dx.doi.org/10.1590/0104-1428.1490.

Gotfredsen K, Warrer K, Hjorting-Hansen E, Karring T. Effect of membranes and porous hydroxyapatite on healing in bone defects around titanium dental implants. An experimental study in monkeys. Clin Oral Implants Res. 1991 Oct-Dec;2(4):172-8. http://dx.doi.org/10.1034/j.1600-0501.1991.020403.x. PMid:8597619.

Hämmerle CHF, Jung RE. Bone augmentation by means of barrier membranes. Periodontol 2000. 2003;33(1):36-53. http://dx.doi.org/10.1046/j.0906-6713.2003.03304.x. PMid:12950840.

Schwarz F, Rothamel D, Herten M, Wüstefeld M, Sager M, Ferrari D, et al. Immunohistochemical characterization of guided bone regeneration at a dehiscence-type defect using different barrier membranes: an experimental study in dogs. Clin Oral Implants Res. 2008 Apr;19(4):402-15. http://dx.doi.org/10.1111/j.1600-0501.2007.01486.x. PMid:18324961.

Calciolari E, Ravanetti F, Strange A, Mardas N, Bozec L, Cacchioli A, et al. Degradation pattern of a porcine collagen membrane in an in vivo model of guided bone regeneration. J Periodontal Res. 2018 Jun;53(3):430-9. http://dx.doi.org/10.1111/jre.12530. PMid:29446096.

Moses O, Vitrial D, Aboodi G, Sculean A, Tal H, Kozlovsky A, et al. Biodegradation of three different collagen membranes in the rat calvarium: a comparative study. J Periodontol. 2008 May;79(5):905-11. http://dx.doi.org/10.1902/jop.2008.070361. PMid:18454670.

Alpar B, Leyhausen G, Günay H, Geurtsen W. Compatibility of resorbable and nonresorbable guided tissue regeneration membranes in cultures of primary human periodontal ligament fibroblasts and human osteoblast-like cells. Clin Oral Investig. 2000 Dec;4(4):219-25. http://dx.doi.org/10.1007/s007840000079. PMid:11218492.

Khang G, Jeon JH, Lee JW, Cho SC, Lee HB. Cell and platelet adhesions on plasma glow discharge-treated poly(lactide-co-glycolide). Biomed Mater Eng. 1997;7(6):357-68. PMid:9622103.

Chang NJ, Lin CC, Shie MY, Yeh ML, Li CF, Liang PI, et al. Positive effects of cell-free porous PLGA implants and early loading exercise on hyaline cartilage regeneration in rabbits. Acta Biomater. 2015 Dec;28:128-37. http://dx.doi.org/10.1016/j.actbio.2015.09.026. PMid:26407650.
 

5ea1838a0e8825444891d3be rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections