Análise da resistência à fratura entre pilares retos e angulados do sistema cone Morse
Analysis of resistance to fracture between straight and angled abutments of Morse taper system
Santos, Vanessa Tavares G.; Trento, Cleverson Luciano; Santos, Pricila Rejane Silva; Siqueira, Allancardi dos Santos; Santos, Silvando Vieira dos; Griza, Sandro
Resumo
Objetivo: Analisar a resistência à fratura por fadiga dos conjuntos implante-pilar, nos tipos reto e angulado, submetidos a cargas cíclicas similares às mastigatórias. Material e método: Foram utilizados 32 implantes (3,75 × 11 mm) com sistema cone Morse e 32 pilares, separados em dois grupos: pilares retos e angulados (n=16) (Neodent, Curitiba, PR, Brasil). Os conjuntos foram submetidos a testes cíclicos em equipamento servo-hidráulico, fixando-se o número de ciclos em cinco milhões. Foram avaliados: número de ciclos, carga e momento de força das amostras. O Teste de Fisher e o Teste ANOVA foram aplicados (p<0,005). Amostras fraturadas foram analisadas em microscopia eletrônica de varredura (MEV). Resultado: Dos pilares retos, quatro resistiram ao número de ciclos estabelecidos, suportando cargas entre 470 N e 510 N. No grupo dos angulados, nove amostras resistiram a cargas entre 570 N e 890 N. Quanto às amostras fraturadas abaixo do número de ciclos, no grupo pilar reto, nove fraturaram com cargas entre 470 N e 630 N. No grupo pilar angulado, cinco amostras fraturaram com cargas entre 760 N e 890 N. Foi calculado, para cada conjunto implante-pilar, o momento de força (Médias: Grupo reto – 4.335,2 Nmm, Grupo angulado – 3.923,3 Nmm). Conclusão: Os dois tipos de pilares (retos e angulados), em condições in vitro, comportaram-se estatisticamente de forma semelhante, sendo aceita a hipótese nula de que não há diferença de resistência à fratura entre os grupos.
Palavras-chave
Abstract
Objective: The aim of this study was to verify the fatigue fracture resistance of the implant-abutment joint, in straight and angled types, subject to cyclic loads similar to chewing. Material and method: It was used 32 implants system (3.75 × 11mm) with Morse taper and 32 abutment, divided in two groups: abutment straight and angled (n = 16) (Neodent, Curitiba, PR, Brazil). The sets were submitted to cyclic testing using servo-hydraulic equipment, fixing the number of cycles at 5 million. It was evaluated the number of cycles, load and moment force of the samples. The Fisher test and ANOVA were applied (p<0,005). Fractured samples were analyzed in the scanning electron microscopy (SEM). Result: Straight abutment, four resisted the cycles number established, supporting loads between 470N and 510N. Angled abutment: nine resisted to loads between 570N and 890N. Regarding the fractured samples below the number of cycles, in the straight abutment, nine fractured with loads between 470N and 630N. In the angled abutment, five fractured with loads ranging from 760N and 890N. The moment of the force was calculated for each joint implant-abutment (Averages: Straight Group - 4335,23Nmm, angled Group - 3923,37Nmm). Conclusion: Two types of abutments (straight and angled), in vitro conditions, statistically behaved similarly, and accepts the null hypothesis that there is no difference in fracture resistance between groups.
Keywords
References
1. Levin L. Dealing with dental implant failures. Refuat Hapeh Vehashinayim. 2010 Jan;27(1):6-12. PMid:20597256.
2. Pye AD, Lockhart DE, Dawson MP, Murray CA, Smith AJ. A review of dental implants and infection. J Hosp Infect. 2009 Jun;72(2):104-10. http://dx.doi.org/10.1016/j.jhin.2009.02.010. PMid:19329223
3. Haas R, Polak C, Fürhauser R, Mailath-Pokorny G, Dörtbudak O, Watzek G. A long-term follow-up of 76 Bränemark single-tooth implants. Clin Oral Implants Res. 2002 Fev;13(1):38-43. http://dx.doi.org/10.1034/j.1600-0501.2002.130104.x. PMid:12005143
4. Weinberg LA, Kruger B. A comparison of implant/prosthesis loading with four clinical variables. Int J Prosthodont. 1995 Set-Out;8(5):421-33. PMid:8595100.
5. Richter EJ. In vivo horizontal bending moments on implants. Int J Oral Maxillofac Implants. 1998 Mar-Abr;13(2):232-44. PMid:9581410.
6. Bidez MW, Misch CE. Force transfer in implant dentistry: basic concepts and principles. J Oral Implantol. 1992; 18(3):264-74. PMid:1289562.
7. Kronström M, Svenson B, Hellman M, Persson GR. Early implant failures in patients treated with Brånemark System titanium dental implants: a retrospective study. Int J Oral Maxillofac Implants. 2001 Mar-Abr;16(2):201-7. PMid:11324208.
8. Santos MD, Pfeifer AB, Silva MR, Sendyk CL, Sendyk WR. Fracture of abutment screw supporting a cemented implant-retained prosthesis with external hexagon connection: a case report with sem evaluation. J Appl Oral Sci. 2007 Abr;15(2):148-51. http://dx.doi.org/10.1590/S1678-77572007000200015. PMid:19089120
9. Coppedê AR, Bersani E, de Mattos MG, Rodrigues RC, Sartori IA, Ribeiro RF. Fracture resistance of the implant-abutment connection in implants with internal hex and internal conical connections under oblique compressive loading: an in vitro study. Int J Prosthodont. 2009 Maio-Jun;22(3):283-6. PMid:19548411.
10. Bozkaya D, Müftü S. Mechanics of the taper integrated screwed-in (TIS) abutments used in dental implants. J Biomech. 2005 Jan;38(1):87-97. http://dx.doi.org/10.1016/j.jbiomech.2004.03.006. PMid:15519343
11. Moris IC, Faria AC, de Mattos MG, Ribeiro RF, Rodrigues RC. Mechanical analysis of conventional and small diameter conical implant abutments. J Adv Prosthodont. 2012 Ago;4(3):158-61. http://dx.doi.org/10.4047/jap.2012.4.3.158. PMid:22977724
12. International Organization for Standardization – ISO. ISO 14801: 2007 – dentistry –implants - dynamic fatigue test for endosseous dental implants. Geneve: ISO; 2007.
13. Cibirka RM, Nelson SK, Lang BR, Rueggeberg FA. Examination of the implant-abutment interface after fatigue testing. J Prosthet Dent. 2001 Mar;85(3):268-75. http://dx.doi.org/10.1067/mpr.2001.114266. PMid:11264934
14. Sailer I, Sailer T, Stawarczyk B, Jung RE, Hämmerle CH. In vitro study of the influence of the type of connection on the fracture load of zirconia abutments with internal and external implant-abutment connections. Int J Oral Maxillofac Implants. 2009 Set-Out;24(5):850-8. PMid:19865625.
15. Quek HC, Tan KB, Nicholls JI. Load fatigue performance of four implant-abutment interface designs: effect of torque level and implant system. Int J Oral Maxillofac Implants. 2008 Mar-Abr;23(2):253-62. PMid:18548921.
16. Dittmer MP, Dittmer S, Borchers L, Kohorst P, Stiesch M. Influence of the interface design on the yield force of the implant-abutment complex before and after cyclic mechanical loading. J Prosthodont Res. 2012 Jan;56(1):19-24. http://dx.doi.org/10.1016/j.jpor.2011.02.002. PMid:21398198
17. Haraldson T, Carlsson GE, Ingervall B. Functional state, bite force and postural muscle activity in patients with osseointegrated oral implant bridges. Acta Odontol Scand. 1979; 37(4):195-206. http://dx.doi.org/10.3109/00016357909027582. PMid:291276
18. Paphangkorakit J, Osborn JW. The effect of pressure on a maximum incisal bite force in man. Arch Oral Biol. 1997 Jan;42(1):11-7. http://dx.doi.org/10.1016/S0003-9969(96)00106-9. PMid:9134111
19. Pedroza JE, Torrealba Y, Elias A, Psoter W. Comparison of the compressive strength of 3 different implant design systems. J Oral Implantol. 2007; 33(1):1-7. http://dx.doi.org/10.1563/0-809.1. PMid:17410905
20. Erneklint C, Odman P, Ortengren U, Karlsson S. An in vitro load evaluation of a conical implant system with 2 abutment designs and 3 different retaining-screw alloys. Int J Oral Maxillofac Implants. 2006 Set-Out;21(5):733-7. PMid:17066634.
21. Gehrke P, Dhom G, Brunner J, Wolf D, Degidi M, Piattelli A. Zirconium implant abutments: fracture strength and influence of cyclic loading on retaining-screw loosening. Quintessence Int. 2006 Jan;37(1):19-26. PMid:16429699.
22. Eger DE, Gunsolley JC, Feldman S. Comparison of angled and standard abutments and their effect on clinical outcomes: a preliminary report. Int J Oral Maxillofac Implants. 2000 Nov-Dez;15(6):819-23. PMid:11151580.