Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/doi/10.1590/1807-2577.1060
Revista de Odontologia da UNESP
Original Article

Avaliação da dureza superfi cial de cimentos de ionômero de vidro reforçados por nanotubos de carbono

Evaluation of surface hardness of glass ionomer reinforced cements by carbon nanotubes

Santos, Mayra Manoella Perez Reis dos; Mathias, Ingrid Fernandes; Diniz, Michele Baffi; Bresciani, Eduardo

Downloads: 0
Views: 1062

Resumo

Introdução: Os cimentos de ionômero de vidro (CIV) são materiais com baixa resistência à tração e ao cisalhamento, mostrando-se, portanto, contraindicados para áreas sujeitas às grandes cargas oclusais. Objetivo: Avaliar o efeito da incorporação de nanotubos de carbono em CIV por meio de dureza superficial Knoop. Material e método: Foram confeccionados 48 espécimes, divididos em quatro grupos, de acordo com o tipo de CIV (n=12) – convencional ou de alta viscosidade, incorporados ou não de nanotubos de carbono (NC) a 2%: (A) Vidrion R; (B) Vidrion R + NC 2%; (C) Vitro Molar, e (D) Vitro Molar + NC 2%. Os espécimes foram preparados utilizando-se seringa Centrix, para inserção do material em moldes plásticos, e armazenados em água deionizada por 24 horas. Após polimento, realizou-se o teste de dureza superficial com penetrador do tipo Knoop. Foram realizadas cinco endentações em cada espécime, distanciadas entre si em 100 μm. Resultado: Os valores médios de dureza foram 58,96 ± 8,29 (A), 34,81 ± 5,78 (B), 60,84 ± 4,91 (C) e 41,97 ± 5,45 (D). O teste ANOVA detectou diferenças estatisticamente significantes para os dois parâmetros estudados, tipo de material (p=0,016) e inclusão de NC (p<0,0001). Pelo teste de Tukey, observou-se que os grupos A e C foram estatisticamente semelhantes (p>0,05), enquanto os grupos B e D apresentaram diferenças significativas (p<0,05). Ao comparar o fator incorporação ou não de NC, observou-se diferença significativa entre os grupos A e B, e entre os grupos C e D (p<0,05). Conclusão: A incorporação de nanotubos de carbono influenciou negativamente os valores de dureza superficial para os dois tipos de CIV utilizados.

Palavras-chave

Cimentos de ionômeros de vidro, nanotubos de carbono, testes de dureza.

Abstract

Introduction: Glass ionomer cements (GIC) are materials with low tensile and shear bond strength and therefore contraindicated in areas subjected to high occlusal stress loads. Aim: To evaluate the effect of incorporation of carbon nanotubes in GICs, conventional or indicated for the Atraumatic Restorative Treatment (ART), through the superficial microhardness test. Material and method: Forty-eight specimens were prepared and divided into 4 groups according to the type of GIC (n=12): conventional or high viscosity, embedded or not with 2% carbon nanotubes (CN): (A) Vidrion R, (B) Vidrion R + 2% CN, (C) Vitro Molar and (D) Vitro Molar + 2% CN. The specimens were inserted into plastic molds with Centrix syringe and stored in deionized water for 24 hours. After polishing, the superficial hardness was performed with a Knoop indenter. Five indentations were made on each specimen, with distance of 100 micrometers between indentations. Result: The average hardness values were 58.96 ± 8.29 (A) 34.81 ± 5.78 (B) 4.91 ± 60.84 (C) 41.97 ± 5.45 (D). ANOVA detected significant difference for the two varibales, material (p=0,016) and CN inclusion (p<0,0001). Tukey test revealed that the groups A and C were statistically similar (p>0.05), while the B and D groups showed significant differences (p<0.05). When comparing the incorporation or not of factor CN, there was significant difference between groups A and B and between C and D groups (p<0.05). Conclusion: The incorporation of CNTs negatively influenced the values of surface hardness for the two types of GIC used.

Keywords

Glass ionomer cements, carbon nanotubes, hardness tests.

References

1. Hammouda IM. Reinforcement of conventional glass-ionomer restorative material with short glass fibers. J Mech Behav Biomed Mater. 2009 Jan;2(1):73-81. http://dx.doi.org/10.1016/j.jmbbm.2008.04.002. PMid:19627810

2. Holmgren CJ, Lo EC, Hu D, Wan H. ART restorations and sealants placed in Chinese school children—results after three years. Community Dent Oral Epidemiol. 2000 Ago;28(4):314-20. http://dx.doi.org/10.1034/j.1600-0528.2000.280410.x. PMid:10901411

3. Zhang F, Xia Y, Xu L, Gu N. Surface modification and microstructure of single-walled carbon nanotubes for dental resin-based composites. J Biomed Mater Res B Appl Biomater. 2008 Jul;86(1):90-7. http://dx.doi.org/10.1002/jbm.b.30991. PMid:18098184

4. Aoki N, Yokoyama A, Nodasaka Y, Akasaka T, Uo M, Sato Y, et al. Cell culture on a carbon nanotube scaffold. J Biomed Nanotechnol. 2005 Nov;1(4):402-5. http://dx.doi.org/10.1166/jbn.2005.048.

5. Kleverlaan CJ, van Duinen RN, Feilzer AJ. Mechanical properties of glass ionomer cements affected by curing methods. Dent Mater. 2004 Jan;20(1):45-50. http://dx.doi.org/10.1016/S0109-5641(03)00067-8. PMid:14698773

6. Xie D, Brantley WA, Culbertson BM, Wang G. Mechanical properties and microstructures of glass-ionomer cements. Dent Mater. 2000 Mar;16(2):129-38. http://dx.doi.org/10.1016/S0109-5641(99)00093-7. PMid:11203534

7. Zhan GD, Kuntz JD, Wan J, Mukherjee AK. Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nat Mater. 2003 Jan;2(1):38-42. http://dx.doi.org/10.1038/nmat793. PMid:12652671

8. Price RL, Waid MC, Haberstroh KM, Webster TJ. Selective bone cell adhesion on formulations containing carbon nanofibers. Biomaterials. 2003 May;24(11):1877-87. http://dx.doi.org/10.1016/S0142-9612(02)00609-9. PMid:12615478

9. Kang S, Pinault M, Pfefferle LD, Elimelech M. Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir. 2007 Ago;23(17):8670-3. http://dx.doi.org/10.1021/la701067r. PMid:17658863

10. Akasaka T, Watari F, Sato Y, Tohji K. Apatite formation on carbon nanotubes. Mater Sci Eng C. 2006 May;26(4):675-8. http://dx.doi.org/10.1016/j.msec.2005.03.009.

11. Yap AU, Pek YS, Kumar RA, Cheang P, Khor KA. Experimental studies on a new bioactive material: HAIonomer cements. Biomaterials. 2002 Fev;23(3):955-62. http://dx.doi.org/10.1016/S0142-9612(01)00208-3. PMid:11774854

12. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991 Nov;354(6348):56-8. http://dx.doi.org/10.1038/354056a0.

13. Fagan SB, Silva AJR, Mota R, Baierle RJ, Fazzio A. Functionalization of carbon nanotubes through the chemical bonding of atoms and molecules. Phys Rev B. 2003; 67(3):33405-8. http://dx.doi.org/10.1103/PhysRevB.67.033405.

14. Bardi G, Tognini P, Ciofani G, Raffa V, Costa M, Pizzorusso T. Pluronic-coated carbon nanotubes do not induce degeneration of cortical neurons in vivo and in vitro. Nanomedicine (Lond). 2009 Mar;5(1):96-104. http://dx.doi.org/10.1016/j.nano.2008.06.008. PMid:18693142

15. Lima MD, Bonadiman R, De Andrade MJ, Toniolo J, Bergmann CP. Synthesis of multi-walled carbon nanotubes by catalytic chemical vapor deposition using Cr2xFexO3 as catalyst. Diamond Related Materials. 2006; 15(10):1708-13. http://dx.doi.org/10.1016/j.diamond.2006.02.009.

16. Wang W, Yokoyama A, Liao S, Omori M, Zhu Y, Uo M, et al. Preparation and characteristics of a binderless carbon nanotube monolith and its biocompatibility. Mater Sci Eng C. 2008 Ago;28(7):1082-6. http://dx.doi.org/10.1016/j.msec.2007.04.038.

17. Kim JW, Shashkov EV, Galanzha EI, Kotagiri N, Zharov VP. Photothermal antimicrobial nanotherapy and nanodiagnostics with selfassembling carbon nanotube clusters. Lasers Surg Med. 2007 Ago;39(7):622-34. http://dx.doi.org/10.1002/lsm.20534. PMid:17868103

18. De Caluwé T, Vercruysse CW, Fraeyman S, Verbeeck RM. The influence of particle size and fluorine content of aluminosilicate glass on the glass ionomer cement properties. Dent Mater. 2014 Set;30(9):1029-38. http://dx.doi.org/10.1016/j.dental.2014.06.003. PMid:25002141

19. Frankenberger R, Sindel J, Krämer N. Viscous glass-ionomer cements: a new alternative to amalgam in the primary dentition? Quintessence Int. 1997 Out;28(10):667-76. PMid:9477887.

20. Vieira IM, Louro RL, Atta MT, Navarro MFL, Francisconi PAS. O cimento de ionômero de vidro na Odontologia. Rev Saúde Com. 2006; 2(1):75-84.

21. Yap AU, Cheang PH, Chay PL. Mechanical properties of two restorative reinforced glass-ionomer cements. J Oral Rehabil. 2002 Jul;29(7):682-8. http://dx.doi.org/10.1046/j.1365-2842.2002.00908.x. PMid:12153459

22. Dowling AH, Fleming GJ. The impact of montmorillonite clay addition on the in vitro wear resistance of a glass-ionomer restorative. J Dent. 2007 Abr;35(4):309-17. http://dx.doi.org/10.1016/j.jdent.2006.10.002. PMid:17125899

23. Ameen AA, Giordano AN, Alston JR, Forney MW, Herring NP, Kobayashi S, et al. Aggregation kinetics of single-walled carbon nanotubes investigated using mechanically wrapped multinuclear complexes: probing the tube-tube repulsive barrier. Phys Chem Chem Phys. 2014 Mar;16(12):5855-65. http://dx.doi.org/10.1039/c3cp55530e. PMid:24549246

24. Sarkar NK. Metal-matrix interface in reinforced glass ionomers. Dent Mater. 1999 Nov;15(6):421-5. http://dx.doi.org/10.1016/S0109-5641(99)00069-X. PMid:10863443

25. Kawano F, Kon M, Kobayashi M, Miyai K. Reinforcement effect of short glass fibers with CaO- P(2)O(5) -SiO(2) -Al(2)O(3) glass on strength of glass-ionomer cement. J Dent. 2001 Jul;29(5):377-80. http://dx.doi.org/10.1016/S0300-5712(01)00023-9. PMid:11472811

588019d27f8c9d0a098b5360 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections