Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/doi/10.1590/1807-2577.09515
Revista de Odontologia da UNESP
Original Article

Evaluation of friction produced by self-ligating, conventional and Barbosa Versatile brackets

Avaliação do atrito produzido por bráquetes autoligados, convencionais e Barbosa Versátil

Barbosa, Jurandir Antonio; Elias, Carlos Nelson; Basting, Roberta Tarkany

Downloads: 3
Views: 647

Abstract

Introduction: The Barbosa Versatile bracket design may provide lower frictional force and greater sliding. However, no in vitro studies have shown its sliding mechanisms and frictional resistance, particularly in comparison with other self-ligating or conventional brackets. Objective: To compare the frictional resistance among self-ligating brackets (EasyClip/ Aditek, Damon MX/ Ormco and In Ovation R/ GAC); conventional brackets (Balance Roth/ GAC, and Roth Monobloc/ Morelli); and Barbosa Versatile bracket (Barbosa Versatile/ GAC) with different angles and arch wires. Material and method: Brackets were tested with the 0.014”, 0.018”, 0.019”×0.025” and 0.021”×0.025” stainless steel wires, with 0, 5, 10, 15 and 20 degree angulations. Tying was performed with elastomeric ligature for conventional and Barbosa Versatile brackets, or with a built-in clip system of the self-ligating brackets. A universal testing machine was used to obtain sliding strength and friction value readouts between brackets and wires. Result: Three-way factorial ANOVA 4×5×6 (brackets × angulation × wire) and Tukey tests showed statistically significant differences for all factors and all interactions (p<0.0001). Static frictional resistance showed a lower rate for Barbosa Versatile bracket and higher rates for Roth Monobloc and Balance brackets. Conclusion: The lowest frictional resistance was obtained with the Barbosa Versatile bracket and self-ligating brackets in comparison with the conventional type. Increasing the diameter of the wires increased the frictional resistance. Smaller angles produced less frictional resistance.

Keywords

Friction, orthodontic wires, orthodontic brackets.

Resumo

Introdução: O bráquete Barbosa Versátil apresenta um desenho que pode promover menor resistência friccional e maior deslize. No entanto, nenhum estudo in vitro avaliou seu mecanismo de deslize e resistência ao atrito, mesmo quando comparado com outros bráquetes autoligados ou convencionais. Objetivo: Comparar a resistência ao atrito entre bráquetes autoligados (EasyClip/ Aditek, Damon MX/ Ormco e In Ovation R/ GAC), convencionais (Balance Roth/ GAC, and Roth Monobloco/ Morelli) e o bráquete Barbosa Versátil (Barbosa Versatile/ GAC) com diferentes angulações e fios. Material e método: Os bráquetes foram avaliados com fios de aço inox 0.014”, 0.018”, 0.019”×0.025” e 0.021”×0.025”, com angulações de 0, 5, 10, 15 e 20 graus. Amarrias foram realizadas com ligaduras elastoméricas para os bráquetes convencionais e para o Barbosa Versátil, enquanto que se utilizou o sistema de fechamento próprio para os bráquetes autoligados. A máquina de teste universal foi utilizada para as avaliações de resistência ao atrito entre os bráquetes e fios. Resultado: ANOVA em esquema fatorial 4 × 5 × 6 (bráquetes × angulação × fios) e o teste de Tukey mostraram que houve diferenças significativas para todos os fatores e interações (p<0,0001). Houve menor resistência ao atrito para o bráquete Barbosa Versátil e maior para os bráquetes Roth Monobloco e Balance. Conclusão: Menor resistência ao atrito foi obtida com o bráquete Barbosa Versátil e com os autoligados em comparação com os bráquetes convencionais. O aumento do diâmetro dos fios aumenta a resistência ao atrito. Menores angulações promovem menor resistência ao atrito.

Palavras-chave

Fricção, fios ortodônticos, bráquetes ortodônticos.

References

1. Kusya RP. Orthodontic biomechanics: vistas from the top of a new century. Am J Orthod Dentofacial Orthop. 2000 May;117(5):589-91. http://dx.doi.org/10.1016/S0889-5406(00)70210-1. PMid:10799125.

2. Burrow SJ. Friction and resistance to sliding in orthodontics: a critical review. Am J Orthod Dentofacial Orthop. 2009 Apr;135(4):442-7. http://dx.doi.org/10.1016/j.ajodo.2008.09.023. PMid:19361729.

3. Ehsani S, Mandich MA, El-Bialy TH, Flores-Mir C. Frictional resistance in self-ligating orthodontic brackets and conventionally ligated brackets. A systematicreview. Angle Orthod. 2009 May;79(3):592-601. http://dx.doi.org/10.2319/060208-288.1. PMid:19413397.

4. Damon DH. The rationale, evolution and clinical application of the self-ligating brackets. Clin Orthod Res. 1998 Aug;1(1):52-61. PMid:9918646.

5. Hain M, Dhopatkar A, Rock P. The effect of ligation method on friction in sliding mechanics. Am J Orthod Dentofacial Orthop. 2003 Apr;123(4):416-22. http://dx.doi.org/10.1067/mod.2003.14. PMid:12695769.

6. Redlich M, Mayer Y, Harari D, Lewinstein I. In vitro study of frictional forces during sliding mechanics of “reduced-friction” brackets. Am J Orthod Dentofacial Orthop. 2003 Jul;124(1):69-73. http://dx.doi.org/10.1016/S0889-5406(03)00238-5. PMid:12867900.

7. Kusy RP, Whitley JQ. Friction between different wire-bracket configurations and materials. Semin Orthod. 1997 Sep;3(3):166-77. http://dx.doi.org/10.1016/S1073-8746(97)80067-9. PMid:9573878.

8. Articolo LC, Kusy RP. Influence of angulation on the resistance to sliding in fixed appliances. Am J Orthod Dentofacial Orthop. 1999 Jan;115(1):39-51. http://dx.doi.org/10.1016/S0889-5406(99)70314-8. PMid:9878956.

9. Thorstenson GA, Kusy RP. Resistance to sliding of self-ligating brackets versus conventional stainless steel twin brackets with second-order angulation in the dry and wet (saliva) states. Am J Orthod Dentofacial Orthop. 2001 Oct;120(4):361-70. http://dx.doi.org/10.1067/mod.2001.116090. PMid:11606960.

10. Thorstenson GA, Kusy RP. Comparison of resistance to sliding between different self-ligating brackets with second-order angulation in the dry and saliva states. Am J Orthod Dentofacial Orthop. 2002 May;121(5):472-82. http://dx.doi.org/10.1067/mod.2002.121562. PMid:12045765.

11. Whitley JQ, Kusy RP. Resistance to sliding of titanium brackets tested against stainless steel and beta-titanium archwires with second-order angulation in the dry and wet states. Am J Orthod Dentofacial Orthop. 2007 Mar;131(3):400-11. http://dx.doi.org/10.1016/j.ajodo.2005.07.019. PMid:17346598.

12. Chung M, Nikolai RJ, Kim KB, Oliver DR. Third-order torque and self-ligating orthodontic bracket-type effects on sliding friction. Angle Orthod. 2009 May;79(3):551-7. http://dx.doi.org/10.2319/022608-114.1. PMid:19413378.

13. Ortan YO, Arslan TY, Aydemir B. A comparative in vitro study of frictional resistance between lingual brackets and stainless steel archwires. Eur J Orthod. 2012 Feb;34(1):119-25. http://dx.doi.org/10.1093/ejo/cjq180. PMid:21239394.

14. Pizzoni L, Ravnholt G, Melsen B. Frictional forces related to self-ligating brackets. Eur J Orthod. 1998;20(3):283-91. http://dx.doi.org/10.1093/ejo/20.3.283. PMid:9699406.

15. Krishnan M, Kalathil S, Abraham KM. Comparative evaluation of frictional forces in active and passive self-ligating brackets with various archwire alloys. Am J Orthod Dentofacial Orthop. 2009 Nov;136(5):675-82. http://dx.doi.org/10.1016/j.ajodo.2007.11.034. PMid:19892284.

16. Voudouris JC, Schismenos C, Lackovic K, Kuftinec MM. Self-ligation esthetic brackets with low frictional resistance. Angle Orthod. 2010 Jan;80(1):188-94. http://dx.doi.org/10.2319/110608-565.1. PMid:19852660.

17. Stefanos S, Secchi AG, Coby G, Tanna N, Mante FK. Friction between various self-ligating brackets and archwire couples during sliding mechanics. Am J Orthod Dentofacial Orthop. 2010 Oct;138(4):463-7. http://dx.doi.org/10.1016/j.ajodo.2008.11.029. PMid:20889052.

18. Brauchli LM, Senn C, Wichelhaus A. Active and passive self-ligation-a myth? Angle Orthod. 2011 Mar;81(2):312-8. http://dx.doi.org/10.2319/041310-205.1. PMid:21208085.

19. Barbosa JA. Desenvolvimento de um braquete versátil para os caninos, na técnica StraightWire. Rev Dental Press Ortodon Ortop Maxilar. 2000 Mar-Abr;5(2):42-6.

20. Arici N, Akdeniz BS, Arici S. Comparison of the frictional characteristics of aesthetic orthodontic brackets measured using a modified in vitro technique. Korean J Orthod. 2015 Jan;45(1):29-37. http://dx.doi.org/10.4041/kjod.2015.45.1.29. PMid:25667915.

21. Cacciafesta V, Sfondrini MF, Ricciardi A, Scribante A, Klersy C, Auricchio F. Evaluation of friction of stainless steel and esthetic self-ligating brackets in various bracket-archwire combinations. Am J Orthod Dentofacial Orthop. 2003 Oct;124(4):395-402. http://dx.doi.org/10.1016/S0889-5406(03)00504-3. PMid:14560269.

22. Loh KW. Rapid tooth movement with a low-force, low-friction bracket system. J Clin Orthod. 2007 Aug;41(8):451-7. PMid:17921596.

23. Kojima Y, Fukui H. Numerical simulations of canine retraction with T-loop springs based on the updated moment-to-force ratio. Eur J Orthod. 2012 Feb;34(1):10-8. http://dx.doi.org/10.1093/ejo/cjq164. PMid:21135033.

24. Southard TE, Marshall SD, Grosland NM. Friction does not increase anchorage loading. Am J Orthod Dentofacial Orthop. 2007 Mar;131(3):412-4. http://dx.doi.org/10.1016/j.ajodo.2006.09.037. PMid:17346599.

25. Baccetti T, Franchi L, Camporesi M. Forces in the presence of ceramic versus stainless steel brackets with unconventional vs conventional ligatures. Angle Orthod. 2008 Jan;78(1):120-4. http://dx.doi.org/10.2319/011107-11.1. PMid:18193950.

26. Cunha AC, Marquezan M, Freitas AO, Nojima LI. Frictional resistance of orthodontic wires tied with 3 types of elastomeric ligatures. Braz Oral Res. 2011 Nov-Dec;25(6):526-30. http://dx.doi.org/10.1590/S1806-83242011005000015. PMid:22147233.

588019e17f8c9d0a098b539f rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections