Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/doi/10.1590/1807-2577.09319
Revista de Odontologia da UNESP
Original Article

Análise da composição química dos cimentos MTA Angelus® branco, cinza e HP Repair® através de Microscopia Eletrônica de Varredura (MEV) acoplada a Espectrômetro de Energia Dispersiva (EDS)

Chemical analysis composition of MTA Angelus gray, white and HP Repair through Electron Microscopy (SEM) coupled by Energy Dispersive Spectrometer (EDS)

Gabriela Duarte Rocha SARZEDA; Marcelo Santos BAHIA; Paulo Victor Teixeira DORIGUÊTTO; Karina Lopes DEVITO; Anamaria Pessoa Pereira LEITE

Downloads: 0
Views: 59

Resumo

Resumo: Introdução: Devido às suas propriedades biológicas e físico-químicas, o MTA tem sido indicado para diferentes situações clínicas na Endodontia.

Objetivo: O objetivo foi analisar a composição química dos cimentos MTA Angelus branco, cinza, e Repair HP.

Material e método: Foram confeccionados cinco corpos de prova de cada tipo de cimento estudado, com diâmetro de 4 mm e altura de 1 mm, utilizando fita condutora de carbono dupla face. Em seguida, as amostras foram analisadas com auxílio de um microscópio eletrônico de varredura acoplado ao aparelho de espectrometria de energia dispersiva. Posteriormente, foram submetidos ao teste estatístico Kolmogorov-Smirnov para verificar a normalidade. Os elementos químicos que apresentaram distribuição normal (média de 5%) foram submetidos ao teste ANOVA e o teste Kruskal-Wallis foi aplicado naqueles com distribuição assimétrica.

Resultado: Após a análise dos elementos químicos, foram observados para o MTA branco: O, Na, K, Mg, Al, Si, Ca e Bi; para o MTA cinza: O, Mg, Al, Si, Ca, Bi, Fe e S, e para o Repair HP: O, Al, Mg, Si, Ca, Fe, Sr, C, Rb e W. Foram identificados 14 elementos químicos nas amostras analisadas (O, Na, Al, Mg, Si, S, K, Ca, Fe, Sr, Bi, C, Rb e W). Destes, cinco foram encontrados em todos os cimentos estudados: O, Al, Mg, Si e Ca.

Conclusão: Os elementos Rb, W e C foram encontrados somente na nova formulação de MTA da Angelus, o Repair HP. Nas amostras analisadas, o Ca e o O foram os que se apresentaram em maior quantidade.

Palavras-chave

Microscopia eletrônica de varredura, materiais dentários, endodontia

Abstract

Abstract: Introduction: Due to its biological and physicochemical properties, MTA has been indicated for different clinical situations in Endodontics.

Objective: The objective was to analyze the chemical composition of MTA Angelus white, gray and Repair HP cements.

Material and method: Five specimens of each type of cement studied were made, with 4mm diameter and 1mm height, using double-sided carbon conductive tape. Then, the samples were analyzed with the aid of a scanning electron microscope coupled to the dispersive energy spectrometry apparatus. They were later submitted to the Kolmogorov-Smirnov statistical test to verify normality. The chemical elements that presented normal distribution (average of 5%) were submitted to the ANOVA test and the Kruskal-Wallis test was applied to those with asymmetric distribution.

Result: After the analysis of the chemical elements, it was observed for the white MTA: O, Na, K, Mg, Al, Si, Ca and Bi; for gray MTA: O, Mg, Al, Si, Ca, Bi, Fe and S; and for HP Repair: O, Al, Mg, Si, Ca, Fe, Sr, C, Rb and W. 14 chemical elements were identified in the samples analyzed (O, Na, Al, Mg, Si, S, K, Ca (Fe, Sr, Bi, C, Rb and W). Of these, 5 were found in all cements studied: O, Al, Mg, Si and Ca.

Conclusion: The elements Rb, W and C were found only in Angelus' new MTA formulation, Repair HP. In the samples analyzed, Ca and O were the ones that presented the largest amount.
 

Keywords

Microscopy, electron, scanning, dental materials, endondontics

References

Leonardo MR, Leonardo RT. Endodontia: conceitos biológicos e recursos tecnológicos. São Paulo: Editora Artes Médicas; 2009.

Cardoso RJA, Machado MEL. Odontologia arte e conhecimento. São Paulo: Editora Artes Médicas; 2003.

Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review-part I: chemical, physical, and antibacterial properties. J Endod. 2010 Jan;36(1):16-27. http://dx.doi.org/10.1016/j.joen.2009.09.006. PMid:20003930.

Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review--part III: clinical applications, drawbacks, and mechanism of action. J Endod. 2010 Mar;36(3):400-13. http://dx.doi.org/10.1016/j.joen.2009.09.009. PMid:20171353.

Estrela C, Bammann LL, Estrela CR, Silva RS, Pécora JD. Antimicrobial and chemical study of MTA, Portland cement, calcium hydroxide paste, Sealapex and Dycal. Braz Dent J. 2000;11(1):3-9. http://dx.doi.org/10.1590/0103-6440201302356. PMid:11210272.

Asgary S, Parirokh M, Eghbal MJ, Brink F. Chemical differences between white and gray mineral trioxide aggregate. J Endod. 2005 Feb;31(2):101-3. http://dx.doi.org/10.1097/01.DON.0000133156.85164.B2. PMid:15671818.

Camilleri J, Montesin FE, Brady K, Sweeney R, Curtis RV, Ford TR. The constitution of mineral trioxide aggregate. Dent Mater. 2005 Apr;21(4):297-303. http://dx.doi.org/10.1016/j.dental.2004.05.010. PMid:15766576.

Song JS, Mante FK, Romanow WJ, Kim S. Chemical analysis of powder and set forms of Portland cement, gray ProRoot MTA, white ProRoot MTA, and gray MTA-Angelus. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006 Dec;102(6):809-15. http://dx.doi.org/10.1016/j.tripleo.2005.11.034. PMid:17138186.

Torabinejad M, Parirokh M. Mineral trioxide aggregate: a comprehensive literature review--part II: leakage and biocompatibility investigations. J Endod. 2010 Feb;36(2):190-202. http://dx.doi.org/10.1016/j.joen.2009.09.010. PMid:20113774.

Yamamoto S, Han L, Noiri Y, Okiji T. Evaluation of the Ca ion release, pH and surface apatite formation of a prototype tricalcium silicate cement. Int Endod J. 2017 Dec;50(Suppl 2):e73-82. http://dx.doi.org/10.1111/iej.12737. PMid:27977862.

Bortoluzzi EA, Broon NJ, Bramante CM, Consolaro A, Garcia RB, Moraes IG, et al. Mineral Trioxide Aggregate with or without calcium chloride in pulpotomy. J Endod. 2008 Feb;34(2):172-5. http://dx.doi.org/10.1016/j.joen.2007.09.015. PMid:18215675.

Ber BS, Hatton JF, Stewart GP. Chemical modification of proroot mta to improve handling characteristics and decrease setting time. J Endod. 2007 Oct;33(10):1231-4. http://dx.doi.org/10.1016/j.joen.2007.06.012. PMid:17889696.

Bortoluzzi EA, Araújo GS, Guerreiro Tanomaru JM, Tanomaru-Filho M. Marginal gingiva discoloration by gray MTA: a case report. J Endod. 2007 Mar;33(3):325-7. http://dx.doi.org/10.1016/j.joen.2006.09.012. PMid:17320726.

Schembri-Wismayer P, Camilleri J. Why Biphasic? Assessment of the effect on cell proliferation and expression. J Endod. 2017 May;43(5):751-9. http://dx.doi.org/10.1016/j.joen.2016.12.022. PMid:28292596.

Zhou Y, Wu C, Xiao Y. The stimulation of proliferation and differentiation of periodontal ligament cells by the ionic products from Ca7Si2P2O16 bioceramics. Acta Biomater. 2012 Jul;8(6):2307-16. http://dx.doi.org/10.1016/j.actbio.2012.03.012. PMid:22409874.

Zhu L, Yang J, Zhang J, Peng B. A comparative study of BioAggregate and ProRoot MTA on adhesion, migration, and attachment of human dental pulp cells. J Endod. 2014 Aug;40(8):1118-23. http://dx.doi.org/10.1016/j.joen.2013.12.028. PMid:25069918.

Figueiredo JAP, Botteselle BV, Ritter DD, Cogo DM, Parlow IF, Mileski JS, et al. Avaliação da radiopacidade do cimento Portland comparado ao cimento MTA. ROBRAC. 2008;17(43):39-45.

Kim EC, Lee BC, Chang HS, Lee W, Hong CU, Min KS. Evaluation of the radiopacity and cytotoxicity of Portland cements containing bismuth oxide. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008 Jan;105(1):e54-7. http://dx.doi.org/10.1016/j.tripleo.2007.08.001. PMid:18155604.

Lee BN, Lee BG, Chang HS, Hwang YC, Hwang IN, Oh WM. Effects of a novel light-curable material on odontoblastic differentiation of human dental pulp cells. Int Endod J. 2017 May;50(5):464-71. http://dx.doi.org/10.1111/iej.12642. PMid:27015645.

Kim J, Song YS, Min KS, Kim SH, Koh JT, Lee BN, et al. Evaluation of reparative dentin formation of ProRoot MTA, Biodentine and BioAggregate using micro-CT and immunohistochemistry. Restor Dent Endod. 2016 Feb;41(1):29-36. http://dx.doi.org/10.5395/rde.2016.41.1.29. PMid:26877988.

Arias-Moliz MT, Farrugia C, Lung CYK, Wismayer PS, Camilleri J. Antimicrobial and biological activity of leachate from light curable pulp capping materials. J Dent. 2017 Sep;64:45-51 http://dx.doi.org/10.1016/j.jdent.2017.06.006. PMid:28645637.

Bortoluzzi EA, Niu LN, Palani CD, El-Awady AR, Hammond BD, Pei DD, et al. Cytotoxicity and osteogenic potential of silicate calcium cements as potential protective materials for pulpal revascularization. Dent Mater. 2015 Dec;31(12):1510-22. http://dx.doi.org/10.1016/j.dental.2015.09.020. PMid:26494267.

Tomás-Catalá CJ, Collado-González M, García-Bernal D, Oñate-Sánchez RE, Forner L, Llena C, et al. Biocompatibility of new pulp-capping materials NeoMTA Plus, MTA Repair HP, and Biodentine on human dental pulp stem cells. J Endod. 2018 Jan;44(1):126-32. http://dx.doi.org/10.1016/j.joen.2017.07.017. PMid:29079052.

Chang SW, Shon WJ, Lee W, Kum KY, Baek SH, Bae KS. Analysis of heavy metal contents in gray and white MTA and 2 kinds of Portland cement: a preliminary study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010 Apr;109(4):642-6. http://dx.doi.org/10.1016/j.tripleo.2009.12.017. PMid:20303061.

Tomás-Catalá CJ, Collado-González M, García-Bernal D, Oñate-Sánchez RE, Forner L, Llena C, et al. Comparative analysis of the biological effects of the endodontic bioactive cements MTA-Angelus, MTA Repair HP and NeoMTA Plus on human dental pulp stem cells. Int Endod J. 2017 Dec;50(Suppl 2):e63-72. http://dx.doi.org/10.1111/iej.12859. PMid:28891221.

Torabinejad M, Hong CU, McDonald F, Pitt Ford TR. Physical and chemical properties of a new root-end filling material. J Endod. 1995 Jul;21(7):349-53. http://dx.doi.org/10.1016/S0099-2399(06)80967-2. PMid:7499973.
 

5dcd42f40e8825fd24bf58f4 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections