Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/doi/10.1590/1807-2577.08919
Revista de Odontologia da UNESP
Original Article

Accuracy evaluation of tridimensional images performed by portable stereophotogrammetric system

Avaliação da acurácia de imagens tridimensionais realizadas em sistema de estereofotogrametria portátil

Alvaro Augusto JUNQUEIRA-JÚNIOR; Laís Valencise MAGRI; Mateus Sgobi CAZAL; Aline Akemi MORI; Ana Maria Bettoni RODRIGUES DA SILVA; Marco Antônio Moreira RODRIGUES DA SILVA

Downloads: 1
Views: 587

Abstract

Abstract: Introduction: Human facial characteristics vary according to individual dental occlusion, facial harmony, orofacial musculature and the format and configuration of craniofacial structures. Traditionally, anthropometric measurements have been acquired through direct evaluation of subjects in a clinical environment using calipers and metric tapes to measure distances between arches and landmarks. Scientific breakthroughs have enabled the digitization of data and introduced the possibility of quick, precise, radiation-free acquisitions; details can be archived for future analysis and easily shared with patients and colleagues. Among new facial analysis methods, the stereophotogrammetry technique has emerged, which uses a group of cameras to take many photographs of a subject in rapid succession from multiple angles. Nowadays, portable stereophotogrammetric systems are being proposed, as they are more practical and easier to use.

Objective: The aim of this work was to analyze the accuracy and reproducibility of a portable 3D stereophotogrammetric system (Vectra H1, Canfield, Fairfield, NJ, USA) in measuring soft facial tissues of 30 participants, defining measures of a cube and comparing these measurements with those obtained by a set 3D stereophotogrammetric system (Vectra M3, Canfield, Fairfield, NJ, USA) with previously validated accuracy and reproducibility through quantitative analysis of possible errors.

Material and method: Thirty temporary landmarks were used to measure (in mm) 34 distances in 30 participants (n = 30). Regarding the cube, 12 angles and 9 linear distances were evaluated.

Result: The results obtained by the established methodology indicated that the Vectra H1 portable system has shown accuracy and reproducibility equal to that of the Vectra M3 set system.

Conclusion: Data analysis and correlation to literature findings show Vectra H1's capability to reliably capture tridimensional images, which makes it practical for use in diverse clinical applications.

Keywords

Stereophotogrammetry, anthropometry, face

Resumo

Resumo: Introdução: A configuração e o formato das estruturas craniofaciais, a oclusão dentária, a musculatura orofacial bem como a harmonia facial são determinantes para as características próprias da face humana. Instrumentos manuais como paquímetro e fitas métricas têm sido tradicionalmente utilizados para realizar as medidas antropométricas, diretamente de um sujeito em ambiente clínico. O avanço tecnológico possibilitou transformar a aquisição destas medidas analógicas em medições digitais, tornando possível aquisições rápidas, precisas e sem radiação. Tais informações podem, ainda, ser arquivadas para futuras análises e compartilhamento de informações com colegas e pacientes. A estereofotogrametria tem se destacado dentre as novas técnicas de captação de imagens tridimensionais, onde um grupo de câmeras de rápida captura fotografam a imagem do indivíduo a partir de variadas angulações. Atualmente, sistemas portáteis de estereofotogrametria vêm sendo propostos no mercado por apresentarem maior praticidade e simplicidade no manuseio.

Objetivo: A proposta do presente estudo foi avaliar a precisão e a reprodutibilidade de um sistema de estereofotogrametria 3D portátil (Vectra H1, Canfield Scientific, Fairfield, NJ, EUA) em medições dos tecidos moles faciais de 30 participantes e de um cubo de medidas definidas, comparando tais medidas com as obtidas por um sistema de estereofotogrametria 3D fixo (Vectra M3, Canfield Scientific, Fairfield, NJ, EUA), de precisão e reprodutibilidade estabelecidas e validadas, através de análise quantitativa dos possíveis erros.

Material e método: Foram realizadas marcações craniométricas transitórias em tecido mole da face nos 30 participantes do estudo (n=30), sendo estes submetidos à aquisição de imagens pela técnica da estereofotogrametria, tanto pelo sistema fixo Vectra M3, quanto pelo sistema portátil Vectra H1. Trinta pontos de referência (landmarks) foram utilizados para realizar as medidas (em mm) de 34 distâncias. Quanto ao cubo, foram avaliados, no total, 20 ângulos, 20 áreas e 9 distâncias lineares.

Resultado: Os resultados obtidos pela metodologia estabelecida mostraram que o sistema portátil Vectra H1 apresentou precisão e repetibilidade comparáveis com o sistema fixo Vectra M3.

Conclusão: A análise dos dados, juntamente com a correlação aos achados da literatura, evidenciam a capacidade do Vectra H1 de capturar imagens tridimensionais de modo eficaz, o que torna viável seu uso nas mais diversas aplicações clínicas.
 

Palavras-chave

Estereofotogrametria, antropometria, face

References

Farkas L. Anthropometry of the head and face. 2nd ed. New York: Raven Press; 1994. p.3-56.

de Menezes M, Rosati R, Ferrario VF, Sforza C. Accuracy and reproducibility of a 3-dimensional stereophotogrammetric imaging system. J Oral Maxillofac Surg. 2010 Sep;68(9):2129-35. http://dx.doi.org/10.1016/j.joms.2009.09.036. PMid:20646812.

Hennessy RJ, McLearie S, Kinsella A, Waddington JL. Facial surface analysis by 3D laser scanning and geometric morphometrics in relation to sexual dimorphism in cerebral-craniofacial morphogenesis and cognitive function. J Anat. 2005 Sep;207(3):283-95. http://dx.doi.org/10.1111/j.1469-7580.2005.00444.x. PMid:16185253.

Tollefson TT, Sykes JM. Computer imaging software for profile photograph analysis. Arch Facial Plast Surg. 2007 Mar-Apr;9(2):113-9. http://dx.doi.org/10.1055/s-2007-979280. PMid:17372065.

Kochel J, Meyer-Marcotty P, Strnad F, Kochel M, Stellzig-Eisenhauer A. 3D soft tissue analysis--part 1: sagittal parameters. J Orofac Orthop. 2010 Jan;71(1):40-52. http://dx.doi.org/10.1007/s00056-010-9926-x. PMid:20135249.

Sforza C, Ferrario VF. Three-dimensional analysis of facial morphology: growth, development and aging of the orolabial region. Ital J Anat Embryol. 2010;115(1-2):141-5. PMid:21073004.

Mutsvangwa TE, Veeraragoo M, Douglas TS. Precision assessment of stereo-photogrammetrically derived facial landmarks in infants. Ann Anat. 2011 Mar;193(2):100-5. http://dx.doi.org/10.1016/j.aanat.2010.10.008. PMid:21167694.

Ritz-Timme S, Gabriel P, Tutkuviene J, Poppa P, Obertová Z, Gibelli D, et al. Metric and morphological assessment of facial features: a study on three European populations. Forensic Sci Int. 2011 Apr;207(1-3):239.e1-8. http://dx.doi.org/10.1016/j.forsciint.2011.01.035. PMid:21388762.

Verzé L, Nasi A, Quaranta F, Vasino V, Prini V, Ramieri G. Quantification of facial movements by surface laser scanning. J Craniofac Surg. 2011 Jan;22(1):60-5. http://dx.doi.org/10.1097/SCS.0b013e3181f6c46d. PMid:21187777.

Weinberg SM, Scott NM, Neiswanger K, Brandon CA, Marazita ML. Digital three-dimensional photogrammetry: evaluation of anthropometric precision and accuracy using a Genex 3D camera system. Cleft Palate Craniofac J. 2004 Sep;41(5):507-18. http://dx.doi.org/10.1597/03-066.1. PMid:15352857.

Weinberg SM, Naidoo S, Govier DP, Martin RA, Kane AA, Marazita ML. Anthropometric precision and accuracy of digital three-dimensional photogrammetry: comparing the Genex and 3dMD imaging systems with one another and with direct anthropometry. J Craniofac Surg. 2006 May;17(3):477-83. http://dx.doi.org/10.1097/00001665-200605000-00015. PMid:16770184.

Ghoddousi H, Edler R, Haers P, Wertheim D, Greenhill D. Comparison of three methods of facial measurement. Int J Oral Maxillofac Surg. 2007 Mar;36(3):250-8. http://dx.doi.org/10.1016/j.ijom.2006.10.001. PMid:17113754.

Wong JY, Oh AK, Ohta E, Hunt AT, Rogers GF, Mulliken JB, et al. Validity and reliability of craniofacial anthropometric measurement of 3D digital photogrammetric images. Cleft Palate Craniofac J. 2008 May;45(3):232-9. http://dx.doi.org/10.1597/06-175. PMid:18452351.

Aldridge K, Boyadjiev SA, Capone GT, DeLeon VB, Richtsmeier JT. Precision and error of three-dimensional phenotypic measures acquired from 3dMD photogrammetric images. Am J Med Genet A. 2005 Oct;138A(3):247-53. http://dx.doi.org/10.1002/ajmg.a.30959. PMid:16158436.

Deli R, Di Gioia E, Galantucci LM, Percoco G. Automated landmark extraction for orthodontic measurement of faces using the 3-camera photogrammetry methodology. J Craniofac Surg. 2010 Jan;21(1):87-93. http://dx.doi.org/10.1097/SCS.0b013e3181c3ba74. PMid:20072024.

Nute SJ, Moss JP. Three-dimensional facial growth studied by optical surface scanning. J Orthod. 2000 Mar;27(1):31-8. http://dx.doi.org/10.1093/ortho/27.1.31. PMid:10790442.

Talbert L, Kau CH, Christou T, Vlachos C, Souccar N. A 3D analysis of Caucasian and African American facial morphologies in a US population. J Orthod. 2014 Mar;41(1):19-29. http://dx.doi.org/10.1179/1465313313Y.0000000077. PMid:24671286.

Weinberg SM, Raffensperger ZD, Kesterke MJ, Heike CL, Cunningham ML, Hecht JT, et al. The 3D facial norms database: part 1. A web-based craniofacial anthropometric and image repository for the clinical and research community. Cleft Palate Craniofac J. 2016 Nov;53(6):e185-97. http://dx.doi.org/10.1597/15-199. PMid:26492185.

Farkas LG. Accuracy of anthropometric measurements: past, present, and future. Cleft Palate Craniofac J. 1996 Jan;33(1):10-8. http://dx.doi.org/10.1597/1545-1569_1996_033_0010_aoampp_2.3.co_2. PMid:8849854.

Farkas LG, Katic MJ, Forrest CR, Alt KW, Bagic I, Baltadjiev G, et al. International anthropometric study of facial morphology in various ethnic groups/races. J Craniofac Surg. 2005 Jul;16(4):615-46. http://dx.doi.org/10.1097/01.scs.0000171847.58031.9e. PMid:16077306.

Gwilliam JR, Cunningham SJ, Hutton T. Reproducibility of soft tissue landmarks on three-dimensional facial scans. Eur J Orthod. 2006 Oct;28(5):408-15. http://dx.doi.org/10.1093/ejo/cjl024. PMid:16901962.

Schimmel M, Christou P, Houstis O, Herrmann FR, Kiliaridis S, Müller F. Distances between facial landmarks can be measured accurately with a new digital 3-dimensional video system. Am J Orthod Dentofacial Orthop. 2010 May;137(5):580.e1-10. http://dx.doi.org/10.1016/j.ajodo.2009.03.039. PMid:20451768.

Fourie Z, Damstra J, Gerrits PO, Ren Y. Evaluation of anthropometric accuracy and reliability using different three-dimensional scanning systems. Forensic Sci Int. 2011 Apr;207(1-3):127-34. http://dx.doi.org/10.1016/j.forsciint.2010.09.018. PMid:20951517.

Junqueira Júnior AA, Magri LV, Melchior MO, Rodrigues da Silva AMB, Rodrigues da Silva MAM. Facial anthropometric analysis of a healthy group of young Brazilian adults by means of stereophotogrammetry technique. Rev Odontol UNESP. 2016 Jun;45(3):139-45. http://dx.doi.org/10.1590/1807-2577.19615.

Andrade LM, Rodrigues da Silva AMB, Magri LV, Rodrigues da Silva MAM. Repeatability study of angular and linear measurements on facial morphology analysis by means of stereophotogrammetry. J Craniofac Surg. 2017 Jun;28(4):1107-11. http://dx.doi.org/10.1097/SCS.0000000000003554. PMid:28212123.

Camison L, Bykowski M, Lee WW, Carlson JC, Roosenboom J, Goldstein JA, et al. Validation of the Vectra H1 portable three-dimensional photogrammetry system for facial imaging. Int J Oral Maxillofac Surg. 2018 Mar;47(3):403-10. http://dx.doi.org/10.1016/j.ijom.2017.08.008. PMid:28919165.

Aynechi N, Larson BE, Leon-Salazar V, Beiraghi S. Accuracy and precision of a 3D anthropometric facial analysis with and without landmark labeling before image acquisition. Angle Orthod. 2011 Mar;81(2):245-52. http://dx.doi.org/10.2319/041810-210.1. PMid:21208076.

Metzler P, Bruegger LS, Kruse Gujer AL, Matthews F, Zemann W, Graetz KW, et al. Craniofacial landmarks in young children: how reliable are measurements based on 3-dimensional imaging? J Craniofac Surg. 2012 Nov;23(6):1790-5. http://dx.doi.org/10.1097/SCS.0b013e318270fa8f. PMid:23147340.

Ferrario VF, Sforza C, Poggio CE, Cova M, Tartaglia G. Preliminary evaluation of an electromagnetic three-dimensional digitizer in facial anthropometry. Cleft Palate Craniofac J. 1998 Jan;35(1):9-15. http://dx.doi.org/10.1597/1545-1569_1998_035_0009_peoaet_2.3.co_2. PMid:9482218.

Staudt CB, Kiliaridis S. A nonradiographic approach to detect Class III skeletal discrepancies. Am J Orthod Dentofacial Orthop. 2009 Jul;136(1):52-8. http://dx.doi.org/10.1016/j.ajodo.2007.07.025. PMid:19577148.

Baik HS, Kim SY. Facial soft-tissue changes in skeletal Class III orthognathic surgery patients analyzed with 3-dimensional laser scanning. Am J Orthod Dentofacial Orthop. 2010 Aug;138(2):167-78. http://dx.doi.org/10.1016/j.ajodo.2010.02.022. PMid:20691358.

Kim HH, Lee JW, Cha KS, Chung DH, Lee SM. Three-dimensional assessment of upper lip positional changes according to simulated maxillary anterior tooth movements by white light scanning. Korean J Orthod. 2014 Nov;44(6):281-93. http://dx.doi.org/10.4041/kjod.2014.44.6.281. PMid:25473644.

Schaaf H, Malik CY, Howaldt HP, Streckbein P. Evolution of photography in maxillofacial surgery: from analog to 3D photography - an overview. Clin Cosmet Investig Dent. 2009 Sep;1:39-45. https://doi.org/10.2147/ccide.s6760.

Lübbers HT, Medinger L, Kruse A, Grätz KW, Matthews F. Precision and accuracy of the 3dMD photogrammetric system in craniomaxillofacial application. J Craniofac Surg. 2010 May;21(3):763-7. http://dx.doi.org/10.1097/SCS.0b013e3181d841f7. PMid:20485043.

Lübbers HT, Medinger L, Kruse AL, Grätz KW, Obwegeser JA, Matthews F. The influence of involuntary facial movements on craniofacial anthropometry: a survey using a three-dimensional photographic system. Br J Oral Maxillofac Surg. 2012 Mar;50(2):171-5. http://dx.doi.org/10.1016/j.bjoms.2010.12.002. PMid:21236527.

de Menezes M, Rosati R, Allievi C, Sforza C. A photographic system for the three-dimensional study of facial morphology. Angle Orthod. 2009 Nov;79(6):1070-7. http://dx.doi.org/10.2319/111008-570. PMid:19852596.

Dindaroğlu F, Kutlu P, Duran GS, Görgülü S, Aslan E. Accuracy and reliability of 3D stereophotogrammetry: A comparison to direct anthropometry and 2D photogrammetry. Angle Orthod. 2016 May;86(3):487-94. http://dx.doi.org/10.2319/041415-244.1. PMid:26267357.

Winder RJ, Darvann TA, McKnight W, Magee JD, Ramsay-Baggs P. Technical validation of the Di3D stereophotogrammetry surface imaging system. Br J Oral Maxillofac Surg. 2008 Jan;46(1):33-7. http://dx.doi.org/10.1016/j.bjoms.2007.09.005. PMid:17980940.

Heike CL, Cunningham ML, Hing AV, Stuhaug E, Starr JR. Picture perfect? Reliability of craniofacial anthropometry using three-dimensional digital stereophotogrammetry. Plast Reconstr Surg. 2009 Oct;124(4):1261-72. http://dx.doi.org/10.1097/PRS.0b013e3181b454bd. PMid:19935311.

Artopoulos A, Buytaert JA, Dirckx JJ, Coward TJ. Comparison of the accuracy of digital stereophotogrammetry and projection moiré profilometry for three-dimensional imaging of the face. Int J Oral Maxillofac Surg. 2014 May;43(5):654-62. http://dx.doi.org/10.1016/j.ijom.2013.10.005. PMid:24225265.

Liu Y, Kau CH, Talbert L, Pan F. Three-dimensional analysis of facial morphology. J Craniofac Surg. 2014 Sep;25(5):1890-4. http://dx.doi.org/10.1097/01.SCS.0000436677.51573.a6. PMid:25072972.

Kornreich D, Mitchell AA, Webb BD, Cristian I, Jabs EW. Quantitative assessment of facial asymmetry using three-dimensional surface imaging in adults: validating the precision and repeatability of a global approach. Cleft Palate Craniofac J. 2016 Jan;53(1):126-31. http://dx.doi.org/10.1597/13-353. PMid:25489769.

Galantucci LM, Percoco G, Lavecchia F, Di Gioia E. Noninvasive computerized scanning method for the correlation between the facial soft and hard tissues for an integrated three-dimensional anthropometry and cephalometry. J Craniofac Surg. 2013 May;24(3):797-804. http://dx.doi.org/10.1097/SCS.0b013e31828dcc81. PMid:23714883.

De Menezes M, Cerón-Zapata AM, López-Palacio AM, Mapelli A, Pisoni L, Sforza C. Evaluation of a three-dimensional stereophotogrammetric method to identify and measure the palatal surface area in children with unilateral cleft lip and palate. Cleft Palate Craniofac J. 2016 Jan;53(1):16-21. http://dx.doi.org/10.1597/14-076. PMid:25794014.

Ferrario VF, Sforza C, Schmitz JH, Santoro F. Three-dimensional facial morphometric assessment of soft tissue changes after orthognathic surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999 Nov;88(5):549-56. http://dx.doi.org/10.1016/S1079-2104(99)70084-3. PMid:10556748.

Al Ali A, Richmond S, Popat H, Toma AM, Playle R, Zhurov AI, et al. The influence of asthma on face shape: a three-dimensional study. Eur J Orthod. 2014 Aug;36(4):373-80. http://dx.doi.org/10.1093/ejo/cjs067. PMid:25074563.

Metzger TE, Kula KS, Eckert GJ, Ghoneima AA. Orthodontic soft-tissue parameters: a comparison of cone-beam computed tomography and the 3dMD imaging system. Am J Orthod Dentofacial Orthop. 2013 Nov;144(5):672-81. http://dx.doi.org/10.1016/j.ajodo.2013.07.007. PMid:24182583.

Moshkelgosha V, Shamsa M. Introduction of aesthetic analyser software: computer-aided linear and angular analysis of facial profiles photographs. J Dent Shiraz Univ Med Scien. 2012 Jun;13(2):64-7.

Perini TA, Oliveira GL, Ornellas JS, Oliveira FP. Technical error of measurement in anthropometry. Rev Bras Med Esporte. 2005 Fev;11(1):81-5. http://dx.doi.org/10.1590/S1517-86922005000100009.

Hirakata VN, Camey SA. Análise de concordância entre métodos de Bland-Altman. Rev HCPA. 2009;29(3):261-8.

Codari M, Pucciarelli V, Stangoni F, Zago M, Tarabbia F, Biglioli F, et al. Facial thirds-based evaluation of facial asymmetry using stereophotogrammetric devices: application to facial palsy subjects. J Craniomaxillofac Surg. 2017 Jan;45(1):76-81. http://dx.doi.org/10.1016/j.jcms.2016.11.003. PMid:27939040.
 

5ddfb70f0e88253f4f61c40f rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections