Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/doi/10.1590/1807-2577.07316
Revista de Odontologia da UNESP
Original Article

Efeito do plasma de oxigênio na dentina previamente exposta ao NaOCl

Effect of oxygen plasma on dentin exposed to NaOCl

Prado, Maíra do; Roizenblit, Rafael Nigri; Pacheco, Laura Villela; Barbosa, Carlos Augusto de Melo; Simão, Renata Antoun

Downloads: 1
Views: 1107

Resumo

Introdução: O tratamento de plasma é uma tecnologia eficaz que pode manter as propriedades internas dos materiais inalteradas após o tratamento, modificando apenas a superfície. Objetivo: Avaliar o efeito do plasma de oxigênio na dentina previamente exposta ao NaOCl 6%. Material e método: Foram utilizados 60 incisivos bovinos. A coroa foi removida, a raiz foi dividida e as faces planificadas, totalizando 120 segmentos referentes ao terço cervical. As amostras foram divididas em dois grupos: controle (imersa em NaOCl 6%, lavada com água destilada, seca, imersa em EDTA 17%, lavada e seca) e plasma de oxigênio (após tratamento descrito no grupo controle, plasma de oxigênio foi aplicado por 30 s). As amostras foram avaliadas qualitativamente em relação à topografia por microscopia eletrônica de varredura, utilizando-se microfotografias com ampliação de 1.000×. O goniômetro Ramé-hart foi utilizado para a mensuração do ângulo de contato entre as superfícies e as seguintes soluções foram utilizadas: água, etilenoglicol e di-iodometano. Em seguida, a energia de superfície, representada pelas componentes polar e dispersiva, foi calculada. Avaliou-se também o escoamento dos cimentos Pulp Canal Sealer EWT (PCS) e Real Sal SE (RS) na superfície dentinária. Os dados foram analisados estatisticamente utilizando os testes Kruskal-Wallis e Mann-Whitney U (p<0,05). Resultado: O tratamento com plasma levou à formação de uma camada semelhante à smear layer na superfície dentinária. Este tratamento levou a um aumento da energia de superfície e da componente polar, favorecendo a hidrofilicidade da superfície. Entretanto, desfavoreceu o escoamento do cimento PCS e não influenciou no escoamento do cimento RS. Conclusão: O plasma de oxigênio ocasionou mudanças topográficas na superfície dentinária, favorecendo a hidrofilicidade desta. Contudo, não favoreceu o escoamento dos cimentos endodônticos na dentina.

Palavras-chave

Gases em plasma, hipoclorito de sódio, topografia, propriedades de superfície, molhabilidade.

Abstract

Introduction: Plasma treatment is an effective technology since the internal properties of the material is kept unchanged after treatment, modifying only the surface. Objective: To evaluate the effect of oxygen plasma on dentin previously exposed to 6% NaOCl. Material and method: 60 bovine incisors were used. The crown was removed, the root splited and the faces planned amounting 120 segments related to the cervical third. The samples were divided into 2 groups, control (immersed in 6% NaOCl, washed with distilled water, dried, immersed in 17% EDTA, washed and dried) and oxygen plasma (after treatment described in the control group, oxygen plasma was applied for 30s). The samples were evaluated qualitatively in relation to topography by scanning electron microscopy using photomicrographs at 1000× of magnification. The Ramé-hart goniometer was used to measure the contact angle between the surfaces and the following solutions: water, ethyleneglycol, and diiodomethane. Then, surface energy, polar and dispersive components, was calculated. Additionally, it was evaluated the flow of Pulp Canal Sealer EWT (PCS) and Real Salt SE (RS) sealers on dentin surface. Data were statistically analyzed using Kruskal-Wallis e Mann-Whitney U (p<0.05). Result: Plasma treatment caused topographical changes on dentin surface. This treatment led to an increase in surface energy and polar component, favoring the hydrophilicity of the surface. However, it disfavors the wettability of PCS and did not influence the RS wettability. Conclusion: The oxygen plasma caused topographical changes on dentin surface, favoring its hydrophilicity. However, it did not favor the sealers wettability on dentin.

Keywords

Plasma gases, sodium hypochlorite, topography, surface properties, wettability.

References

1. Zehnder M. Root canal irrigants. J Endod. 2006 May;32(5):389-98. PMid:16631834. http://dx.doi.org/10.1016/j.joen.2005.09.014.

2. Slutzky-Goldberg I, Maree M, Liberman R, Heling I. Effect of sodium hypochlorite on dentin microhardness. J Endod. 2004 Dec;30(12):880-2. PMid:15564869. http://dx.doi.org/10.1097/01.DON.0000128748.05148.1E.

3. Moreira DM, Almeida JF, Ferraz CC, Gomes BP, Line SR, Zaia AA. Structural analysis of bovine root dentin after use of different endodontics auxiliary chemical substances. J Endod. 2009 Jul;35(7):1023-7. PMid:19567327. http://dx.doi.org/10.1016/j.joen.2009.04.002.

4. Prado M, Simão RA, Gomes BP. Effect of different irrigation protocols on resin sealer bond strength to dentin. J Endod. 2013 May;39(5):689-92. PMid:23611392. http://dx.doi.org/10.1016/j.joen.2012.12.009.

5. Chen M, Zhang Y, Sky Driver M, Caruso AN, Yu Q, Wang Y. Surface modification of several dental substrates by non-thermal, atmospheric plasma brush. Dent Mater. 2013 Aug;29(8):871-80. PMid:23755823. http://dx.doi.org/10.1016/j.dental.2013.05.002.

6. Ritts AC, Li H, Yu Q, Xu C, Yao X, Hong L, et al. Dentin surface treatment using a non-thermal argon plasma brush for interfacial bonding improvement in composite restoration. Eur J Oral Sci. 2010 Oct;118(5):510-6. PMid:20831586. http://dx.doi.org/10.1111/j.1600-0722.2010.00761.x.

7. Porciúncula M, Menezes MSO, Gusman H, Simão RA, Prado M. Tecnologia de plasma na odontologia: revisão de literatura. Rev Bras Odontol. 2015 Jan-Jun;72(1/2):100-3. http://dx.doi.org/10.18363/rbo.v72i1/2.598.

8. Blumhagen A, Singh P, Mustapha A, Chen M, Wang Y, Yu Q. Plasma deactivation of oral bacteria seeded on hydroxyapatite disks as tooth enamel analogue. Am J Dent. 2014 Apr;27(2):84-90. PMid:25000666.

9. Whittaker AG, Graham EM, Baxter RL, Jones AC, Richardson PR, Meek G, et al. Plasma cleaning of dental instruments. J Hosp Infect. 2004 Jan;56(1):37-41. PMid:14706269. http://dx.doi.org/10.1016/j.jhin.2003.09.019.

10. Pan J, Sun K, Liang Y, Sun P, Yang X, Wang J, et al. Cold plasma therapy of a tooth root canal infected with Enterococcus faecalis biofilms in vitro. J Endod. 2013 Jan;39(1):105-10. PMid:23228267. http://dx.doi.org/10.1016/j.joen.2012.08.017.

11. Costa Dantas MC, Figueiredo IS, Pacheco LV, Prado M, Simão RA. Efeito da terapia de plasma de argônio em dentes expostos a hipoclorito de sódio: análise da hidrofilicidade. RFO UPF. 2015 Abr;20(1):32-8.

12. Costa Dantas MC, Prado M, Costa VS, Gaiotte MG, Simão RA, Bastian FL. Comparison between the effect of plasma and chemical treatments on fiber post surface. J Endod. 2012 Feb;38(2):215-8. PMid:22244639. http://dx.doi.org/10.1016/j.joen.2011.10.020.

13. Spyrides SM, Prado M, Simão RA, Bastian FL. Effect of plasma and fiber position on flexural properties of a polyethylene fiber-reinforced composite. Braz Dent J. 2015 Oct;26(5):490-6. PMid:26647934. http://dx.doi.org/10.1590/0103-644020130225.

14. Lee HW, Kim GJ, Kim JM, Park JK, Lee JK, Kim GC. Tooth bleaching with nonthermal atmospheric pressure plasma. J Endod. 2009 Apr;35(4):587-91. PMid:19345811. http://dx.doi.org/10.1016/j.joen.2009.01.008.

15. Yu H-Y, He X-C, Liu L-Q, Gu J-S, Wei X-W. Surface modification of poly(propylene) microporous membrane to improve its antifouling characteristics in an SMBR: O2 plasma treatment. Plasma Process Polym. 2008 Jan;5(1):84-91. http://dx.doi.org/10.1002/ppap.200700051.

16. Lee H-U, Kang Y-H, Jeong S-Y, Koh K, Kim J-P, Bae J-S, et al. Long-term aging characteristics of atmospheric-plasma-treated poly(ɛ-caprolactone) films and fibres. Polym Degrad Stabil. 2011 Jul;96(7):1204-9. http://dx.doi.org/10.1016/j.polymdegradstab.2011.04.012.

17. Lee JH, Rhee KY, Lee JH. Effects of reactive gas on shear and fracture behaviors of plasma-treated polyethylene/steel joints. Appl Surf Sci. 2009 Nov;256(3):876-83. http://dx.doi.org/10.1016/j.apsusc.2009.08.076.

18. Prado M, Roizenblit RN, Pacheco LV, Barbosa CAM, Lima CO, Simão RA. Effect of argon plasma on root dentin after use of 6% NaOCl. Braz Dent J. 2016;27(1):41-5. PMid:27007344. http://dx.doi.org/10.1590/0103-6440201600486.

19. Halimi P, Camps J, Roche M, Proust JP. Physico-chemical properties of 4 endodontic sealing cements. Rev Fr Endod. 1990 Dec;9(4):35-42. PMid:2077577.

20. Ferreira R, Prado M, Soares AJ, Zaia AA, Souza-Filho FJ. Influence of using clinical microscope as auxiliary to perform mechanical cleaning of post space: a bond strength analysis. J Endod. 2015 Aug;41(8):1311-6. PMid:26215031. http://dx.doi.org/10.1016/j.joen.2015.05.003.

21. Prado M, Simão RA. Surface Analysis techniques for root canal filling adhesion studies. In: McFarland A, Akins M. Recent advances in adhesions research. New York: Nova Science Publisher; 2013.

22. Dogan Buzoglu H, Calt S, Gümüsderelioglu M. Evaluation of the surface free energy on root canal dentine walls treated with chelating agents and NaOCl. Int Endod J. 2007 Jan;40(1):18-24. PMid:17209828. http://dx.doi.org/10.1111/j.1365-2591.2006.01169.x.

23. Assis DF, Prado M, Simão RA. Evaluation of the interaction between endodontic sealers and dentin treated with different irrigant solutions. J Endod. 2011 Nov;37(11):1550-2. PMid:22000461. http://dx.doi.org/10.1016/j.joen.2011.08.014.

24. Vivacqua-Gomes N, Ferraz CC, Gomes BP, Zaia AA, Teixeira FB, Souza-Filho FJ. Influence of irrigants on the coronal microleakage of laterally condensed gutta-percha root fillings. Int Endod J. 2002 Sep;35(9):791-5. PMid:12449031. http://dx.doi.org/10.1046/j.1365-2591.2002.00569.x.

25. Prado M, Simão RA, Gomes BP. Evaluation of different irrigation protocols concerning the formation of chemical smear layer. Microsc Res Tech. 2013 Feb;76(2):196-200. http://dx.doi.org/10.1002/jemt.22153.

588019e97f8c9d0a098b53c3 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections