Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/doi/10.1590/1807-2577.06715
Revista de Odontologia da UNESP
Original Article

Modeling and validation of a 3D premolar for finite element analysis

Modelagem e validação 3D de um premolar para análise de elementos finitos

Durand, Letícia Brandão; Guimarães, Jackeline Coutinho; Monteiro Junior, Sylvio; Baratieri, Luiz Narciso

Downloads: 0
Views: 1085

Abstract

Introduction: The development and validation of mathematical models is an important step of the methodology of finite element studies. Objective: This study aims to describe the development and validation of a three-dimensional numerical model of a maxillary premolar for finite element analysis. Material and method: The 3D model was based on standardized photographs of sequential slices of an intact premolar and generated with the use of SolidWorks Software (Dassault, France). In order to validate the model, compression and numerical tests were performed. The load versus displacement graphs of both tests were visually compared, the percentage of error calculated and homogeneity of regression coefficients tested. Result: An accurate 3D model was developed and validated since the graphs were visually similar, the percentage error was within acceptable limits, and the straight lines were considered parallel. Conclusion: The modeling procedures and validation described allows the development of accurate 3D dental models with biomechanical behavior similar to natural teeth. The methods may be applied in development and validation of new models and computer-aided simulations using FEM.

Keywords

Computer simulation, validation studies, finite element analysis.

Resumo

Introdução: O desenvolvimento e validação de modelos matemáticos é uma importante etapa da metodologia de estudos de elementos finitos. Objetivo: Este estudo tem o objetivo descrever o desenvolvimento e validação de um modelo numérico tridimensional de um pré-molar superior para análise em elementos finitos. Material e método: Fotografias padronizadas de cortes sequenciais de um pré-molar hígido serviram de referência para o desenvolvimento do modelo 3D, que foi construído por meio do programa SolidWorks (Dassault, França). A fim de validar o modelo testes de compressão e simulação numérica foram realizados. Os gráficos de carga versus deslocamento de ambos os ensaios foram comparados visualmente, a percentagem de erro calculada e homogeneidade dos coeficientes de regressão testada. Resultado: Um modelo 3D preciso foi desenvolvido e validado, uma vez que os gráficos apresentavam-se visualmente semelhantes, o percentual de erro ficou dentro dos limites aceitáveis e as retas foram consideradas paralelas. Conclusão: Os procedimentos de modelagem e validação descritos permitem o desenvolvimento de modelos dentários 3D precisos com comportamento biomecânico semelhante aos dentes naturais. Os métodos podem ser aplicados no desenvolvimento e validação de novos modelos e estudos de simulações computacionais por meio do MEF.

Palavras-chave

Simulação por computador, estudos de validação, análise de elementos finitos.

References

1. Farah JW, Craig RG. Distribution of stresses in porcelain-fused-to-metal and porcelain jacket crowns. J Dent Res. 1975 Mar-Apr;54(2):255-61. PMid:1054335.

2. Bulaqi HA, Mashhadi MM, Safari H, Samandari MM, Geramipanah F. Effect of increased crown height on stress distribution in short dental implant components and their surrounding bone: a finite element analysis. J Prosthet Dent. 2015 Jun;113(6):548-57. http://dx.doi.org/10.1016/j.prosdent.2014.11.007. PMid:25794917.

3. Chaudhry A, Sidhu MS, Chaudhary G, Grover S, Chaudhry N, Kaushik A. Evaluation of stress changes in the mandible with a fixed functional appliance: a finite element study. Am J Orthod Dentofacial Orthop. 2015 Feb;147(2):226-34. http://dx.doi.org/10.1016/j.ajodo.2014.09.020. PMid:25636557.

4. Güngör MA, Küçük M, Dündar M, Karaoğlu C, Artunç C. Effect of temperature and stress distribution on all-ceramic restorations by using a three-dimensional finite element analysis. J Oral Rehabil. 2004 Feb;31(2):172-8. http://dx.doi.org/10.1111/j.1365-2842.2004.01005.x. PMid:15009603.

5. Li Y, Carrera C, Chen R, Li J, Chen Y, Lenton P, et al. Fatigue failure of dentin–composite disks subjected to cyclic diametral compression. Dent Mater. 2015 Jul;31(7):778-88. http://dx.doi.org/10.1016/j.dental.2015.03.014. PMid:25958269.

6. Huang M, Thompson VP, Rekow ED, Soboyejo WO. Modeling of water absorption induced cracks in resin-based composite supported ceramic layer structures. J Biomed Mater Res B Appl Biomater. 2008 Jan;84(1):124-30. http://dx.doi.org/10.1002/jbm.b.30852. PMid:17497681.

7. Pishevar L, Ghavam M, Pishevar A. Stress analysis of two methods of ceramic inlay preparation by finite element. Indian J Dent Res. 2014 May-Jun;25(3):364-9. http://dx.doi.org/10.4103/0970-9290.138339. PMid:25098996.

8. Durand LB, Guimarães JC, Monteiro S Jr, Baratieri LN. Effect of ceramic thickness and composite bases on stress distribution of inlays - a finite element analysis. Braz Dent J. 2015 Mar-Apr;26(2):146-51. http://dx.doi.org/10.1590/0103-6440201300258. PMid:25831105.

9. Guimarães JC, Soella GG, Durand LB, Horn F, Baratieri LN, Monteiro S Jr, et al. Stress amplifications in dental non-carious cervical lesions. J Biomech. 2014 Jan;47(2):410-6. http://dx.doi.org/10.1016/j.jbiomech.2013.11.012. PMid:24315624.

10. Magne P. Virtual prototyping of adhesively restored, endodontically treated molars. J Prosthet Dent. 2010 Jun;103(6):343-51. http://dx.doi.org/10.1016/S0022-3913(10)60074-1. PMid:20493323.

11. Borcic J, Anic I, Smojver I, Catic A, Miletic I, Ribaric SP. 3D finite element model and cervical lesion formation in normal occlusion and in malocclusion. J Oral Rehabil. 2005 Jul;32(7):504-10. http://dx.doi.org/10.1111/j.1365-2842.2005.01455.x. PMid:15975130.

12. Dumont ER, Grosse IR, Slater GJ. Requirements for comparing the performance of finite element models of biological structures. J Theor Biol. 2009 Jan;256(1):96-103. http://dx.doi.org/10.1016/j.jtbi.2008.08.017. PMid:18834892.

13. Genovese K, Lamberti L, Pappalettere C. Finite element analysis of a new customized composite post system for endodontically treated teeth. J Biomech. 2005 Dec;38(12):2375-89. http://dx.doi.org/10.1016/j.jbiomech.2004.10.009. PMid:16214485.

14. Dordoni E, Petrini L, Wu W, Migliavacca F, Dubini G, Pennati G. Computational modeling to predict fatigue behavior of NiTi stents: what do we need? J Funct Biomater. 2015 May;6(2):299-317. http://dx.doi.org/10.3390/jfb6020299. PMid:26011245.

15. Chang K-H, Magdum S, Khera SC, Goel VK. An advanced approach for computer modeling and prototyping of the human tooth. Ann Biomed Eng. 2003 May;31(5):621-31. http://dx.doi.org/10.1114/1.1568117. PMid:12757205.

16. Kiapour A, Kiapour AM, Kaul V, Quatman CE, Wordeman SC, Hewett TE, et al. Finite element model of the knee for investigation of injury mechanisms: development and validation. J Biomech Eng. 2014 Jan;136(1):011002. http://dx.doi.org/10.1115/1.4025692. PMid:24763546.

17. Jones AC, Wilcox RK. Finite element analysis of the spine: towards a framework of verification, validation and sensitivity analysis. Med Eng Phys. 2008 Dec;30(10):1287-304. http://dx.doi.org/10.1016/j.medengphy.2008.09.006. PMid:18986824.

18. Ausiello P, Franciosa P, Martorelli M, Watts DC. Numerical fatigue 3D-FE modeling of indirect composite-restored posterior teeth. Dent Mater. 2011 May;27(5):423-30. http://dx.doi.org/10.1016/j.dental.2010.12.001. PMid:21227484.

19. Tajima K, Chen K-K, Takahashi N, Noda N, Nagamatsu Y, Kakigawa H. Three-dimensional finite element modeling from CT images of tooth and its validation. Dent Mater J. 2009 Mar;28(2):219-26. http://dx.doi.org/10.4012/dmj.28.219. PMid:19496403.

20. Lin C-L, Chang Y-H, Liu P-R. Multi-factorial analysis of a cusp-replacing adhesive premolar restoration: a finite element study. J Dent. 2008 Mar;36(3):194-203. http://dx.doi.org/10.1016/j.jdent.2007.11.016. PMid:18221831.

21. Czyż M, Scigała K, Jarmundowicz W, Będziński R. Numerical model of the human cervical spinal cord--the development and validation. Acta Bioeng Biomech. 2011 Dec;13(4):51-8. PMid:22339282.

22. Ausiello P, Apicella A, Davidson CL, Rengo S. 3D-finite element analyses of cusp movements in a human upper premolar, restored with adhesive resin-based composites. J Biomech. 2001 Oct;34(10):1269-77. http://dx.doi.org/10.1016/S0021-9290(01)00098-7. PMid:11522306.

23. Ausiello P, Apicella A, Davidson CL. Effect of adhesive layer properties on stress distribution in composite restorations--a 3D finite element analysis. Dent Mater. 2002 Jun;18(4):295-303. http://dx.doi.org/10.1016/S0109-5641(01)00042-2. PMid:11992906.

24. Ausiello P, Rengo S, Davidson CL, Watts DC. Stress distributions in adhesively cemented ceramic and resin-composite Class II inlay restorations: a 3D-FEA study. Dent Mater. 2004 Nov;20(9):862-72. http://dx.doi.org/10.1016/j.dental.2004.05.001. PMid:15451242.

25. Chang Y-H, Lin W-H, Kuo W-C, Chang C-Y, Lin C-L. Mechanical interactions of cuspal-coverage designs and cement thickness in a cusp-replacing ceramic premolar restoration: a finite element study. Med Biol Eng Comput. 2009 Apr;47(4):367-74. http://dx.doi.org/10.1007/s11517-008-0379-y. PMid:18679734.

588019df7f8c9d0a098b5396 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections