Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/doi/10.1590/1807-2577.05418
Revista de Odontologia da UNESP
Original Article

Biomechanical effect of inclined implants in fixed prosthesis: strain and stress analysis

Efeito biomecânico de implantes inclinados em prótese fixa: analise das tensões e deformações

Vinícius Anéas RODRIGUES; João Paulo Mendes TRIBST; Leandro Ruivo SANTIS; Alexandre Luiz Souto BORGES; Renato Sussumu NISHIOKA

Downloads: 0
Views: 832

Abstract

Abstract: Introduction: Implant inclinations can be corrected using mini abutments at different angulations.

Objective: To analyze the influence of external hexagon implants in different inclinations (3 levels) on the microstrain distribution generated around three implants.

Method: A geometric bone model was created through Rhinoceros CAD software (version 5.0 SR8, Mcneel North America, Seattle, WA, USA). Three implants (4.1 × 13 mm) were modeled and inserted inside the substrate at three different inclinations: 0º, 17º and 30º. Next, all groups received mini conical abutments, fixation screws and a simplified prosthesis. The final geometry was exported in STEP format to analysis software and all materials were considered homogeneous, isotropic and linearly elastic. An axial load (300N) was applied on the center of the prosthesis. An in vitro study was conducted with same conditions and groups for validating the tridimentional model.

Result: Stress was concentrated on the external area of the implants, in contact with the cortical bone and external hexagon. For the bone simulator, the strain increased in the peri-implant region according to the increase in the implant’s inclination. The difference between groups was significant (p = 0.000). The 30º group presented higher stress and strain concentration.

Conclusion: The microstrain and stress increase around implants directly proportional to the increase of the installation angle.

Keywords

Finite element analyses, dental implant, fixed prosthesis

Resumo

Resumo: Introdução: A inclinação dos implantes pode ser corrigida através de mini-pilares de diferentes angulações.

Objetivo: Analisar a influência de implantes com hexágono externo em diferentes inclinações (3 níveis) na distribuição de microdeformações geradas em torno de três implantes.

Método: Um modelo geométrico de osso foi criado através do software CAD Rhinoceros (versão 5.0 SR8, Mcneel North America, Seattle, WA, EUA). Três implantes (4,1 × 13 mm) foram modelados e inseridos no interior do substrato em três diferentes inclinações: 0º, 17º e 30º. Em seguida, todos os grupos receberam mini-pilares cônicos, parafusos de fixação e prótese simplificada. A geometria final foi exportada em formato STEP para software de análise e todos os materiais foram considerados homogêneos, isotrópicos e linearmente elásticos. Uma carga axial (300N) foi aplicada no centro da prótese. Um estudo in vitro foi conduzido com as mesmas condições e grupos para validar o modelo tridimensional.

Resultado: A concentração de tensão ocorreu na área externa dos implantes, em contato com o osso cortical e o hexágono externo. Para o simulador ósseo, a deformação aumentou na região peri-implantar de acordo com o aumento da inclinação do implante. A diferença entre os grupos foi significativa (p = 0.000). O grupo de 30º apresentou maior concentração de tensão e deformação.

Conclusão: O aumento da microdeformação e das tensões ao redor dos implantes aumenta diretamente proporcional ao aumento do ângulo de instalação.
 

Palavras-chave

Análises de elementos finitos, implante dentário, prótese fixa

References

Saab XE, Griggs JA, Powers JM, Engelmeier RL. Effect of abutment angulation on the strain on the bone around an implant in the anterior maxilla: a finite element study. J Prosthet Dent. 2007 Feb;97(2):85-92. http://dx.doi.org/10.1016/j.prosdent.2006.12.002. PMid:17341376.

Akkad S, Richards M. Solutions for severely angulated implants in the mandibular overdenture: a clinical report. J Prosthodont. 2009 Jun;18(4):342-7. http://dx.doi.org/10.1111/j.1532-849X.2008.00400.x. PMid:19054301.

Stephens GJ, di Vitale N, O’Sullivan E, McDonald A. The influence of interimplant divergence on the retention characteristics of locator attachments, a laboratory study. J Prosthodont. 2014 Aug;23(6):467-75. http://dx.doi.org/10.1111/jopr.12144. PMid:24750293.

Watanabe F, Hata Y, Komatsu S, Ramos TC, Fukuda H. Finite element analysis of the influence of implant inclination, loading position, and load direction on stress distribution. Odontology. 2003 Sep;91(1):31-6. http://dx.doi.org/10.1007/s10266-003-0029-7. PMid:14505187.

Frost HM. Wolff’s law and bone’structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod. 1994;64(3):175-88. PMid:8060014.

Tribst JP, Rodrigues VA, Dal Piva AO, Borges AL, Nishioka RS. The importance of correct implants positioning and masticatory load direction on a fixed prosthesis. J Clin Exp Dent. 2018 Jan;10(1):e81-7. PMid:29670721.

Krekmanov L. Placement of posterior mandibular and maxillary implants in patients with severe bone deficiency: a clinical report of procedure. Int J Oral Maxillofac Implants. 2000 Sep-Oct;15(5):722-30. PMid:11055139.

Wang C, Zhang W, Ajmera DH, Zhang Y, Fan Y, Ji P. Simulated bone remodeling around tilted dental implants in the anterior maxilla. Biomech Model Mechanobiol. 2016 Jun;15(3):701-12. http://dx.doi.org/10.1007/s10237-015-0718-5. PMid:26285769.

Zhang G, Yuan H, Chen X, Wang W, Chen J, Liang J, et al. A tridimensional finite element study on the biomechanical simulation of various structured dental implants and their surrounding bone tissues. Int J Dent. 2016;2016:4867402. http://dx.doi.org/10.1155/2016/4867402. PMid:26904121.

Álvarez-Arenal Á, Segura-Mori L, Gonzalez-Gonzalez I, DeLlanos-Lanchares H, Sanchez-Lasheras F, Ellacuria-Echevarria J. Stress distribution in the transitional peri-implant bone in a single implant-supported prosthesis with platform-switching under different angulated loads. Odontology. 2017 Jan;105(1):68-75. http://dx.doi.org/10.1007/s10266-016-0237-6. PMid:26943357.

Pesqueira AA, Goiato MC, Gennari H Fo, Monteiro DR, Santos DM, Haddad MF, et al. Use of stress analysis methods to evaluate the biomechanics of oral rehabilitation with implants. J Oral Implantol. 2014 Apr;40(2):217-28. http://dx.doi.org/10.1563/AAID-JOI-D-11-00066. PMid:24779954.

Tribst JPM, Dal Piva AMO, Borges ALS. Biomechanical tools to study dental implants: a literature review. Braz Dent Sci. 2016;19(4):5-11. http://dx.doi.org/10.14295/bds.2016.v19i4.1321.

Lanza MDS, Seraidarian PI, Jansen WC, Lanza MD. Stress analysis of a fixed implant-supported denture by the finite element method (FEM) when varying the number of teeth used as abutments. J Appl Oral Sci. 2011 Dec;19(6):655-61. http://dx.doi.org/10.1590/S1678-77572011000600019. PMid:22231003.

Tribst JPM, Rodrigues VA, Borges ALS, Lima DR, Nishioka RS. Validation of a simplified implant-retained cantilever fixed prosthesis. Implant Dent. 2018 Feb;27(1):49-55. PMid:29341975.

Benzing UR, Gall H, Weber H. Biomechanical aspects of two different implant-prosthetic concepts for edentulous maxillae. Int J Oral Maxillofac Implants. 1995 Mar-Apr;10(2):188-98. PMid:7744438.

Stegaroiu R, Sato T, Kusakari H, Miyakawa O. Influence of restoration type on stress distribution in bone around implants: a tridimensional finite element analysis. Int J Oral Maxillofac Implants. 1998 Jan-Feb;13(1):82-90. PMid:9509784.

Miyashiro M, Suedam V, Moretti RT No, Ferreira PM, Rubo JH. Validation of an experimental polyurethane model for biomechanical studies on implant supported prosthesis – tension tests. J Appl Oral Sci. 2011 Jun;19(3):244-8. http://dx.doi.org/10.1590/S1678-77572011000300012. PMid:21625741.

Clelland NL, Carr AB, Gilat A. Comparison of strains transferred to a bone simulant between as-cast and postsoldered implant frameworks for a five-implant-supported fixed prosthesis. J Prosthodont. 1996 Sep;5(3):193-200. http://dx.doi.org/10.1111/j.1532-849X.1996.tb00296.x. PMid:9028224.

Rangert BR, Sullivan RM, Jemt TM. Load factor control for implants in the posterior partially edentulous segment. Int J Oral Maxillofac Implants. 1997 May-Jun;12(3):360-70. PMid:9197101.

Wiskott HW, Belser UC. Lack of integration of smooth titanium surfaces: a working hypothesis based on strains generated in the surrounding bone. Clin Oral Implants Res. 1999 Dec;10(6):429-44. http://dx.doi.org/10.1034/j.1600-0501.1999.100601.x. PMid:10740452.

Rodrigues VA, Tribst JPM, Santis LR, Lima DR, Nishioka RS. Influence of angulation and vertical misfit in the evaluation of microdeformations around implants. Braz Dent Sci. 2017 Jan-Mar;20(1):32-9. http://dx.doi.org/10.14295/bds.2017.v20i1.1311.

Mericske-Stern R, Assal P, Mericske E, Bürgin W. Oclusal force and oral tactile sensibility measured in partially edentulous patients with ITI implants. Int J Oral Maxillofac Implants. 1995 May-Jun;10(3):345-53. PMid:7615331.

Rangert B, Krogh PH, Langer B, Van Roekel N. Bending overload and implant fracture: a retrospective clinical analysis. Int J Oral Maxillofac Implants. 1995 May-Jun;10(3):326-34. PMid:7615329.

Vasconcellos LG, Nishioka RS, Vasconcellos LM, Balducci I, Kojima AN. Microstrain around dental implants supporting fixed partial prostheses under axial and nonaxial loading conditions, in vitro strain gauge analysis. J Craniofac Surg. 2013 Nov;24(6):e546-51. http://dx.doi.org/10.1097/SCS.0b013e31829ac83d. PMid:24220463.

Tribst JPM, Morais DC, Alonso AA, Piva AMOD, Borges ALS. Comparative three-dimensional finite element analysis of implant-supported fixed complete arch mandibular prostheses in two materials. J Indian Prosthodont Soc. 2017 Jul-Sep;17(3):255-60. http://dx.doi.org/10.4103/jips.jips_11_17. PMid:28936039.

Tribst JPM, Dal Piva AMO, Shibli JA, Borges ALS, Tango RN. Influence of implantoplasty on stress distribution of exposed implants at different bone insertion levels. Braz Oral Res. 2017 Dec;31(0):e96. http://dx.doi.org/10.1590/1807-3107bor-2017.vol31.0096. PMid:29236900.

Tribst JPM, Dal Piva AMO, Rodrigues VA, Borges ALS, Nishioka RS. Stress and strain distributions on short implants with two different prosthetic connections–an in vitro and in silico analysis. Braz Dent Sci. 2017 Jul-Sep;20(3):101-9. http://dx.doi.org/10.14295/bds.2017.v20i3.1433.

Tribst JPM, Piva AMODAL, Borges ALS, Bottino MA. Influence of crown and hybrid abutment ceramic materials on the stress distribution of implant-supported prosthesis. Rev Odontol UNESP. 2018;47(3):149-54. http://dx.doi.org/10.1590/1807-2577.04218.
 

5b97b5370e8825397f88bac9 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections