Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/doi/10.1590/1807-2577.04622
Revista de Odontologia da UNESP
Original Article

Influência do hipoclorito de sódio na resistência à fadiga cíclica em instrumentos rotatórios endodônticos de memória controlada de NiTi: uma avaliação experimental

Influence of sodium hypochlorite on cyclic fatigue resistance in niti controlled memory endodontics rotary instruments: an experimental evaluation

Marcelo Leite MESQUITA; Carlos Eduardo da Silveira BUENO; Alexandre Sigrist DE MARTIN; Rina Andrea PELEGRINE; Carlos Eduardo FONTANA

Downloads: 1
Views: 367

Resumo

Resumo: Introdução: É importante saber se o hipoclorito de sódio (NaOCl) influencia a resistência à fadiga cíclica das limas de níquel-titânio (NiTi).

Objetivo: Avaliar a influência de NaOCl 2,5% na resistência à fadiga cíclica de dois sistemas de NiTi.

Material e: método: 40 instrumentos rotatórios – 20 TruNatomy® (TRU, Dentsply Sirona, Maillefer, Ballaigues, Suíça) e 20 Prodesing Logic2® (PDL2, Bassi, Belo Horizonte, Minas Gerais, Brasil) – foram aleatoriamente distribuídos em 4 grupos experimentais (n = 10) imersos em água destilada (H2O) e NaOCl 2,5% em temperatura a 37°C. Foram submetidos a testes de fadiga cíclica mensurando o número de ciclos para fratura (NCF) e análise dessas superfícies pós-teste em microscópio eletrônico por varredura. Para a análise estatística entre os grupos, foi aplicada a análise de variância (ANOVA), complementada com o pós-teste de Tukey.

Resultado: Houve diferença estatística em todos os grupos (P < 0,05). Os instrumentos PDL2 obtiveram maior resistência à fratura nas condições em H2O e em NaOCl 2,5% comparados aos instrumentos TRU. Na análise de grupos de instrumentos nas soluções de NaOCl e H2O, foi observado que o NaOCl 2,5% diminuiu o NCF.

Conclusão: A resistência à fadiga cíclica dos instrumentos TRU e PDL2 diminuiu com NaOCl 2,5%. Os instrumentos PDL2 foram mais resistentes à fratura em relação aos instrumentos TRU.

Palavras-chave

Corrosão, fadiga, fratura, tratamento térmico

Abstract

Abstract: Introduction: It is important to know whether sodium hypochlorite (NaOCl) influences the cyclic fatigue resistance of nickel-titanium (NiTi) files.

Objective: To evaluate the influence of NaOCl 2.5% on the cyclic fatigue resistance of two NiTi systems.

Material and method: Forty rotary instruments – 20 TruNatomy® (TRU, Dentsply Sirona, Maillefer, Ballaigues, Switzerland) and 20 Prodesign Logic2® (PDL2, Bassi, Belo Horizonte, Minas Gerais, Brazil) – were distributed randomly across four experimental groups (n=10) and submerged in distilled water (H2O) or 2.5% NaOCl at 37°C according to allocation. Cyclic fatigue testing was then performed, measuring the number of cycles to fracture (NCF), and post-test surfaces were analysed by scanning electron microscopy (SEM). Statistical Analysis: Analysis of variance (ANOVA) was applied for between-group analysis, followed by Tukey’s post-hoc test.

Result: A significant difference was observed in all groups (P<0.05). PDL2 instruments showed higher fracture resistance under H2O and 2.5% NaOCl conditions compared to TRU. Analysis of all instrument groups showed that exposure to 2.5% NaOCl decreased the NCF compared to H2O.

Conclusion: Cyclic fatigue resistance of the TRU and PDL2 instruments was decreased by exposure to 2.5% NaOCl. PDL2 instruments were more resistant to fracture than TRU instruments.
 

Keywords

Corrosion, fatigue, fracture, heat treatment

References

1 Walia HM, Brantley WA, Gerstein H. An initial investigation of the bending and torsional properties of nitinol root canal files. J Endod. 1988 Jul;14(7):346-51. http://dx.doi.org/10.1016/S0099-2399(88)80196-1. PMid:3251996.

2 Al‐Obaida MI, Alzuwayer AA, Alanazi SS, Balhaddad AA. In vitro analysis of the fatigue resistance of four single file canal preparation instruments. Materials (Basel). 2022 Jan;15(2):688. http://dx.doi.org/10.3390/ma15020688. PMid:35057402.

3 Hülsmann M, Donnermeyer D, Schäfer E. A critical appraisal of studies on cyclic fatigue resistance of engine-driven endodontic instruments. Int Endod J. 2019 Oct;52(10):1427-45.; http://dx.doi.org/10.1111/iej.13182. PMid:31267579.

4 Palma PJ, Messias A, Cerqueira AR, Tavares LD, Caramelo F, Roseiro L, et al. Cyclic fatigue resistance of three rotary file systems in a dynamic model after immersion in sodium hypochlorite. Odontology. 2019 Jul;107(3):324-32. http://dx.doi.org/10.1007/s10266-018-0401-2. PMid:30542934.

5 Alcalde MP, Tanomaru-Filho M, Bramante CM, Duarte MAH, Guerreiro-Tanomaru JM, Camilo-Pinto J, et al. Cyclic and torsional fatigue resistance of reciprocating single files manufactured by different nickel-titanium alloys. J Endod. 2017 Jul;43(7):1186-91. http://dx.doi.org/10.1016/j.joen.2017.03.008. PMid:28527852.

6 Keleş A, Eymirli A, Uyanık O, Nagas E. Influence of static and dynamic cyclic fatigue tests on the lifespan of four reciprocating systems at different temperatures. Int Endod J. 2019 Jun;52(6):880-6. http://dx.doi.org/10.1111/iej.13073. PMid:30656704.

7 Zupanc J, Vahdat-Pajouh N, Schäfer E. New thermomechanically treated NiTi alloys a review. Int Endod J. 2018 Oct;51(10):1088-103. http://dx.doi.org/10.1111/iej.12924. PMid:29574784.

8 Elnaghy AM, Elsaka SE. Effect of sodium hypochlorite and saline on cyclic fatigue resistance of WaveOne Gold and Reciproc reciprocating instruments. Int Endod J. 2017 Oct;50(10):991-8.; http://dx.doi.org/10.1111/iej.12712. PMid:27770436.

9 Abuhulaibah HF, AbuMostafa A. Resistance to cyclic fatigue of nickel-titanium files immersed in sodium hypochlorite at body temperature. Int J Dent. 2020;2020:8830163. http://dx.doi.org/10.1155/2020/8830163.

10 Lopes HP, Britto IM, Elias CN, Machado de Oliveira JC, Neves MA, Moreira EJ, et al. Cyclic fatigue resistance of ProTaper Universal instruments when subjected to static and dynamic tests. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010 Sep;110(3):401-4. http://dx.doi.org/10.1016/j.tripleo.2010.05.013. PMid:20727501.

11 Elnaghy AM, Elsaka SE, Elshazli AH. Dynamic cyclic and torsional fatigue resistance of TruNatomy compared with different nickel–titanium rotary instruments. Aust Endod J. 2020 Aug;46(2):226-33. http://dx.doi.org/10.1111/aej.12396. PMid:32022376.

12 Gündoğar M, Uslu G, Özyürek T, Plotino G. Comparison of the cyclic fatigue resistance of VDW.ROTATE, TruNatomy, 2Shape, and HyFlex CM nickel-titanium rotary files at body temperature. Restor Dent Endod. 2020 Jun;45(3):e37. http://dx.doi.org/10.5395/rde.2020.45.e37. PMid:32839718.

13 Tanomaru-Filho M, Galletti Espir C, Carolina Venção A, Macedo-Serrano N, Camilo-Pinto J, Guerreiro-Tanomaru JM. Cyclic fatigue resistance of heat-treated nickel-titanium instruments. Iran Endod J. 2018;13(3):312-7. http://dx.doi.org/10.22037/iej.v13i3.18637. PMid:30083199.

14 Dentsply Sirona. TruNatomy Brochure [online]. Ballaigues, Switzerland: Dentsply Sirona; 2019 [citado 2021 maio 22]. Disponível em: //assets.dentsplysirona.com/flagship/en/explore/endodontics/brochure/trunatomy/END-TruNatomy-Brochure.pdf

15 Easy Equipamentos Odontológicos. Prodesing Logic 2 [online]. Belo Horizonte: Easy Equipamentos Odontológicos; 2021 [citado 2021 maio 22]. Disponível em: https://easyequipamentos.com.br/loja/limas-rotatorias/prodesign-logic-2/

16 Melo MC, Pereira ES, Viana AC, Fonseca AM, Buono VT, Bahia MG. Dimensional characterization and mechanical behaviour of K3 rotary instruments. Int Endod J. 2008 Apr;41(4):329-38. http://dx.doi.org/10.1111/j.1365-2591.2007.01368.x. PMid:18217988.

17 Riyahi AM, Bashiri A, Alshahrani K, Alshahrani S, Alamri HM, Al-Sudani D. Cyclic fatigue comparison of TruNatomy, Twisted File, and ProTaper Next Rotary Systems. Int J Dent. 2020 Feb;2020:3190938. http://dx.doi.org/10.1155/2020/3190938. PMid:32184827.

18 Pedullà E, Benites A, La Rosa GM, Plotino G, Grande NM, Rapisarda E, et al. Cyclic fatigue resistance of heat-treated nickel-titanium instruments after immersion in sodium hypochlorite and/or sterilization. J Endod. 2018 Apr;44(4):648-53. http://dx.doi.org/10.1016/j.joen.2017.12.011. PMid:29397218.

19 Sarkar NK, Redmond W, Schwaninger B, Goldberg AJ. The chloride corrosion behaviour of four orthodontic wires. J Oral Rehabil. 1983 Mar;10(2):121-8. http://dx.doi.org/10.1111/j.1365-2842.1983.tb00106.x. PMid:6573461.

20 Adigüzel M, Capar ID. Comparison of cyclic fatigue resistance of WaveOne and WaveOne Gold small, primary, and large instruments. J Endod. 2017 Apr;43(4):623-7. http://dx.doi.org/10.1016/j.joen.2016.11.021. PMid:28216272.

21 Capar ID, Kaval ME, Ertas H, Sen BH. Comparison of the cyclic fatigue resistance of 5 different rotary pathfinding instruments made of conventional nickel-titanium wire, M-wire, and controlled memory wire. J Endod. 2015 Apr;41(4):535-8. http://dx.doi.org/10.1016/j.joen.2014.11.008. PMid:25510316.

22 Klymus ME, Alcalde MP, Vivan RR, Só MV, de Vasconselos BC, Duarte MA. Effect of temperature on the cyclic fatigue resistance of thermally treated reciprocating instruments. Clin Oral Investig. 2019 Jul;23(7):3047-52. http://dx.doi.org/10.1007/s00784-018-2718-1. PMid:30397733.

23 Shen Y, Zhou HM, Zheng YF, Peng B, Haapasalo M. Current challenges and concepts of the thermomechanical treatment of nickel-titanium instruments. J Endod. 2013 Feb;39(2):163-72. http://dx.doi.org/10.1016/j.joen.2012.11.005. PMid:23321225.

24 Pirani C, Ruggeri O, Cirulli PP, Pelliccioni GA, Gandolfi MG, Prati C. Metallurgical analysis and fatigue resistance of WaveOne and ProTaper Nickel-Titanium instruments. Odontology. 2014 Jul;102(2):211-6. http://dx.doi.org/10.1007/s10266-013-0113-6. PMid:23568014.

25 Lopes HP, Elias CN, Vieira VT, Moreira EJ, Marques RV, de Oliveira JC, et al. Effects of electropolishing surface treatment on the cyclic fatigue resistance of BioRace nickel-titanium rotary instruments. J Endod. 2010 Oct;36(10):1653-7. http://dx.doi.org/10.1016/j.joen.2010.06.026. PMid:20850671.
 


Submitted date:
11/18/2022

Accepted date:
11/21/2022

639a04a7a9539518bf4e5dd6 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections