Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/doi/10.1590/1807-2577.04522
Revista de Odontologia da UNESP
Original Article

Avaliação da perda óssea utilizando diferentes parâmetros na análise microtomográfica. Estudo em ratos

Bone loss assessment using different parameters in the microtomographic analysis. Study in rats

Gabrielle Christine Bonetti SALLUM; Cassio SCARDUELI; Guilherme José Pimentel Lopes de OLIVEIRA; Rubens SPIN NETO; Rosemary Adriana Chierici MARCANTONIO

Downloads: 0
Views: 311

Resumo

Resumo: Introdução: o desafio no uso do Micro-Ct tem sido estabelecer e padronizar padrões adequados para escaneamento e tratamento das imagens, para que se obtenha o máximo desempenho do equipamento, e permitir a comparação dos achados entre diferentes estudos.

Objetivo: o presente estudo tem como objetivo comparar a porcentagem de volume ósseo em regiões com perda óssea periodontal utilizando diferentes metodologias para definição da área a ser analisada (ROI).

Material e método: dez ratos foram submetidos à indução de doença periodontal, e, após a eutanásia, as mandíbulas foram escaneadas com cortes de 9 μ e 18 μm de espessura, com passo de rotação de 0.3mm. As imagens foram reconstituídas utilizando o software NRecon, e em seguida, utilizando o software CTAnalyser – CTAn, foram definidas as áreas de interesse (ROI) ao redor dos segundos molares. A primeira área de interesse (ROI1) foi definida em um padrão retangular que se restringiu às regiões interproximais e furca, onde a área total de tecido ósseo foi obtida somando os resultados dos 3 ROIs. A segunda área (ROI2) foi definida no sentido corono/apical ao redor do segundo molar até suas limitações proximais com os dentes vizinhos, onde a porcentagem de tecido ósseo pertencente às raízes foram excluídas das avaliações. As análises foram realizadas com cinco diferentes valores de thresholds (130-50, 130-60, 130-70, 130-80, 130-90 e 130-100).

Resultado: a análise entre os diferentes ROIs demonstrou que em ambas as análises foi observada a tendência a menor porcentagem de tecido ósseo quanto maior o contraste de tons de cinza utilizado, no entanto, nos resultados obtidos no ROI2 essa diferença não foi estatisticamente significante.

Conclusão: com os resultados obtidos pode se concluir que a utilização de diferentes thresholds para quantificação óssea, em áreas onde houve doença periodontal, pode trazer resultados divergentes; a definição da área de interesse interfere com os resultados obtidos e que a obtenção de uma área de interesse com a remoção das raízes mostrou-se menos susceptível à variação dos parâmetros de escaneamento.

Palavras-chave

Microtomografia computadorizada, Micro-Ct, periodontite

Abstract

Abstract: Introduction: the challenge in the use of Micro-Ct has been to establish and standardize adequate standards for scanning and image processing to obtain the maximum performance of the equipment and to allow the comparison of findings between different studies.

Objective: this study aims to compare the percentage of bone volume in regions with periodontal bone loss using different methodologies to define the area to be analysed (ROI).

Material and method: ten rats were submitted to periodontal disease induction, and, after euthanasia, the mandibles were scanned with slices of 9μ and 18μm thickness, with a rotation step of 0.3mm. The images were reconstructed using the NRecon software, and then, using the CTAnalyser - CTAn software, the areas of interest (ROI) around the second molars were defined. The first area of ​​interest (ROI1) was defined in a rectangular pattern that was restricted to the interproximal and furcation regions, where the total area of ​​bone tissue was obtained by adding the results of the 3 ROIs. The second area (ROI2) was defined in the coronal/apical direction around the second molar to its proximal limitations with the neighboring teeth, in which the percentage of bone tissue belonging to the roots was excluded from the evaluations. Analyses were performed with five different threshold values ​​(130-50, 130-60, 130-70, 130-80, 130-90, and 130-100).

Result: the analysis between the different ROIs showed that, in both analyses, there was a tendency towards a lower percentage of bone tissue the greater the grayscale contrast used. However, in the results obtained in ROI2, this difference was not statistically significant.

Conclusion: with the results obtained, it can be concluded that the use of different thresholds for bone quantification, in areas where there was a periodontal disease, can bring divergent results; the definition of the area of ​​interest interferes with the results obtained; and that obtaining an area of ​​interest with the removal of the roots, proved to be less susceptible to the variation of the scanning parameters.
 

Keywords

Computerized microtomography, Micro-Ct, periodontitis

References

1 Baker PJ. The role of immune responses in bone loss during periodontal disease. Microbes Infect. 2000 Aug;2(10):1181-92. http://dx.doi.org/10.1016/S1286-4579(00)01272-7. PMid:11008108.

2 Löe H, Anerud A, Boysen H. The natural history of periodontal disease in man: prevalence, severity, and extent of gingival recession. J Periodontol. 1992 Jun;63(6):489-95. http://dx.doi.org/10.1902/jop.1992.63.6.489. PMid:1625148.

3 Lindhe J, Karring T, Lang NP. Clinical periodontology and implant dentistry. 4ª ed. Oxford: Blackwell Publishing Company; 2003.

4 Sodek J, McKee MD. Molecular and cellular biology of alveolar bone. Periodontol 2000. 2000 Oct;24(1):99-126. http://dx.doi.org/10.1034/j.1600-0757.2000.2240106.x. PMid:11276877.

5 Trisi P, Rebaudi A, Calvari F, Lazzara RJ. Sinus graft with biogran, autogenous bone, and PRP: a report of three cases with histology and Micro-Ct. Int J Periodontics Restorative Dent. 2006 Apr;26(2):113-25. PMid:16642900.

6 Wilkie JR, Giger ML, Chinander MR, Vokes TJ, Li H, Dixon L, et al. Comparison of radiographic texture analysis from computed radiography and bone densitometry systems. Med Phys. 2004 Apr;31(4):882-91. http://dx.doi.org/10.1118/1.1650529. PMid:15125006.

7 Genant HK, Engelke K, Fuerst T, Glüer CC, Grampp S, Harris ST, et al. Noninvasive assessment of bone mineral and structure: state of the art. J Bone Miner Res. 1996 Jun;11(6):707-30. http://dx.doi.org/10.1002/jbmr.5650110602. PMid:8725168.

8 Slyfield CR, Tkachenko EV, Wilson DL, Hernandez CJ. Three-dimensional dynamic bone histomorphometry. J Bone Miner Res. 2012 Feb;27(2):486-95. http://dx.doi.org/10.1002/jbmr.553. PMid:22028195.

9 Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Müller R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res. 2010 Jul;25(7):1468-86. http://dx.doi.org/10.1002/jbmr.141. PMid:20533309.

10 Molon RS, Avila ED, Nogueira AVB, Souza JAC, Avila-Campos MJ, Andrade CR, et al. Evaluation of the host response in various models of induced periodontal disease in mice. J Periodontol. 2014 Mar;85(3):465-77. http://dx.doi.org/10.1902/jop.2013.130225. PMid:23805811.

11 Ebina H, Hatakeyama J, Onodera M, Honma T, Kamakura S, Shimauchi H, et al. Micro-Ct analysis of alveolar bone healing using a rat experimental model of critical-size defects. Oral Dis. 2009 May;15(4):273-80. http://dx.doi.org/10.1111/j.1601-0825.2009.01522.x. PMid:19320960.

12 Fernandes MI, Gaio EJ, Oppermann RV, Rados PV, Rosing CK. Comparison of histometric and morphometric analyses of bone height in ligature-induced periodontitis in rats. Braz Oral Res. 2007 Jul-Sep;21(3):216-21. http://dx.doi.org/10.1590/S1806-83242007000300005. PMid:17710286.

13 Ferrare N, Leite AF, Caracas HC, Azevedo RB, Melo NS, Figueiredo PTS. Cone-beam computed tomography and microtomography for alveolar bone measurements. Surg Radiol Anat. 2013 Aug;35(6):495-502. http://dx.doi.org/10.1007/s00276-013-1080-x. PMid:23400642.

14 Chackartchi T, Iezzi G, Goldstein M, Klinger A, Soskolne A, Piattelli A, et al. Sinus floor augmentation using large (1-2 mm) or small (0.25-1 mm) bovine bone mineral particles: a prospective, intra-individual controlled clinical, micro-computerized tomography and histomorphometric study. Clin Oral Implants Res. 2011 May;22(5):473-80. http://dx.doi.org/10.1111/j.1600-0501.2010.02032.x. PMid:21087317.

15 Smet E, Jaecques SV, Wevers M, Jansen JA, Jacobs R, Sloten JV, et al. Effect of controlled early implant loading on bone healing and bone mass in guinea pigs, as assessed by Micro-Ct and histology. Eur J Oral Sci. 2006 Jun;114(3):232-42. http://dx.doi.org/10.1111/j.1600-0722.2006.00355.x. PMid:16776773.

16 Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M. The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res. 1989 Feb;4(1):3-11. http://dx.doi.org/10.1002/jbmr.5650040103. PMid:2718776.

17 Macedo PD, Tsurumaki JN, Rossa-Junior C, Marcantonio RAC. Quantificação de volume ósseo em microtomografia computadorizada: comparação entre diferentes áreas de interesse (ROI). Proceedings of the 30th SBPqO Annual Meeting; 2013 set 5-8; Águas de Lindoia, BR. Campinas: SBPqO; 2013. p. 294.

18 Coimbra LS, Rossa C Jr, Guimarães MR, Gerlach RF, Muscará MN, Spolidorio DM, et al. Influence of antiplatelet drugs in the pathogenesis of experimental periodontitis and periodontal repair in rats. J Periodontol. 2011 May;82(5):767-77. http://dx.doi.org/10.1902/jop.2010.100555. PMid:21073332.

19 Liu YF, Wu LA, Wang J, Wen LY, Wang XJ. Micro-computerized tomography analysis of alveolar bone loss in ligature- and nicotine-induced experimental periodontitis in rats. J Periodontal Res. 2010 Dec;45(6):714-9. http://dx.doi.org/10.1111/j.1600-0765.2010.01290.x. PMid:20572916.

20 Park CH, Abramson ZR, Taba M Jr, Jin Q, Chang J, Kreider JM, et al. Three-dimensional micro-computed tomographic imaging of alveolar bone in experimental bone loss or repair. J Periodontol. 2007 Feb;78(2):273-81. http://dx.doi.org/10.1902/jop.2007.060252. PMid:17274716.

21 Basillais A, Bensamoun S, Chappard C, Brunet-Imbault B, Lemineur G, Ilharreborde B, et al. Three-dimensional characterization of cortical bone microstructure by microcomputed tomography: validation with ultrasonic and microscopic measurements. J Orthop Sci. 2007 Mar;12(2):141-8. http://dx.doi.org/10.1007/s00776-006-1104-z. PMid:17393269.

22 Chang PC, Liang K, Lim JC, Chung MC, Chien LY. A comparison of the thresholding strategies of Micro-Ct for periodontal bone loss: a pilot study. Dentomaxillofac Radiol. 2013;42(2):66925194. http://dx.doi.org/10.1259/dmfr/66925194. PMid:22842634.

23 Gielkens PF, Schortinghuis J, Jong JR, Huysmans MC, Leeuwen MB, Raghoebar GM, et al. A comparison of Micro-Ct, microradiography and histomorphometry in bone research. Arch Oral Biol. 2008 Jun;53(6):558-66. http://dx.doi.org/10.1016/j.archoralbio.2007.11.011. PMid:18190892.

24 Lima JR, Bernardino SS, Pereira LSG, Pignaton TB, Spin-Neto R, Marcantonio-Junior E, et al. Effect of different thresholds on the accuracy of linear and volumetric analysis of native- and grafted-bone. Braz Dent J. 2022 Jul-Aug;33(4):40-6. http://dx.doi.org/10.1590/0103-6440202204823. PMid:36043567.
 


Submitted date:
11/16/2022

Accepted date:
11/17/2022

63922d46a953953200380f14 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections