Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/doi/10.1590/1807-2577.04422
Revista de Odontologia da UNESP
Original Article

Comparação da expansão óssea promovida pela técnica de osseodensificação com dois tipos de conjunto de fresas

Comparison of bone expansion promoted by the osseodensification technique with two types of drill sets

Caio Gustavo Todesco CARDOZO; Janderson de Medeiros CARDOSO; Ana Daisy ZACHARÍAS; Flávia Noemy Gasparini Kiatake FONTÃO; Guilherme José Pimentel Lopes de OLIVEIRA; Elcio MARCANTONIO JUNIOR

Downloads: 0
Views: 351

Resumo

Resumo: Introdução: A estabilidade primária é um importante indicador de sucesso da osseointegração. Porém, fatores locais com osso de baixa intensidade podem interferir negativamente na obtenção da estabilidade primária.

Objetivo: O presente estudo avaliou o efeito de diferentes direções, velocidades de rotação e sistemas de fresagem na expansão de perfurações e estabilidade de implantes instalados em blocos mimetizando osso do tipo IV.

Material e método: Foram instalados 50 implantes em blocos de poliuretano sólido rígido. Esses implantes foram igualmente divididos em cinco grupos (n = 10): 1) Fresa Maximus (utilizadas no sentido horário a 1200rpm); 2) Fresa Maximus (utilizadas no sentido horário a 600rpm); 3) Fresa Neodent (utilizadas no sentido horário a 800rpm); 4) Fresa Neodent (utilizadas no sentido anti-horário a 800rpm); 5) Fresa Neodent (utilizadas no sentido anti-horário a 600rpm). Foram executadas análises de estabilidade dos implantes através de testes de torque de inserção e remoção, além das análises de frequência de ressonância. Adicionalmente, a expansão associada às perfurações promovida pelas brocas foi avaliada por meio de análises tomográficas.

Resultado: Verificou-se que os implantes instalados após o preparo da perfuração com as brocas Maximus a 600rpm apresentaram valores de torque de inserção maiores, quando comparados ao grupo de implantes instalados em perfurações confeccionadas com brocas Neodent. Ademais, as brocas Maximus apresentaram valores de expansão maiores que as brocas Neodent.

Conclusão: As brocas Maximus são mais eficientes em promover a osseodensificação, e sua utilização está associada ao aumento da estabilidade dos implantes instalados em blocos mimetizando osso do tipo IV.

Palavras-chave

Análise de frequência de ressonância, implantes dentários, tomografia de feixe cônico

Abstract

Abstract: Introduction: Primary stability is an important indicator to obtain a successful osseointegration. However, local factors like bone with low density can negatively interfere in obtaining primary stability.

Objective: This study assessed the effect of different drilling systems, speeds, and movement directions on the expansion of perforations and the stability of implants placed in blocks that mimicked type IV bone.

Material and method: Fifty implants were installed in rigid solid polyurethane blocks and equally divided into the following five groups (n = 10): 1) Maximus Driller (on a clockwise direction at 1200rpm); 2) Maximus Driller (on a clockwise direction at 600rpm); 3) Neodent Driller (on a clockwise direction at 800rpm); 4) Neodent Driller (on a counter clockwise direction at 800rpm); 5) Neodent Driller (on a counter clockwise direction at 600rpm). The stability analyses of the implants were performed through insertion and removal torque testing, in addition to resonance frequency analysis. Additionally, the expansion promoted by the drills associated with the perforations was assessed through tomographic analysis.

Result: We found that implants placed after drilling preparation with Maximus drills at 600 rpm had higher values ​​of insertion torque than the group of implants installed in drillings made with Neodent drills. In addition, the maximus drills showed higher expansion values ​​than the Neodent drills.

Conclusion: Maximus drills are more efficient in promoting osseodensification and their use was associated with increased stability of implants installed in blocks that mimicked type IV bone.
 

Keywords

Cone beam tomography, dental implants, resonance frequency analysis

References

1 Guglielmotti MB, Olmedo DG, Cabrini RL. Research on implants and osseointegration. Periodontol 2000. 2019 Feb;79(1):178-89. http://dx.doi.org/10.1111/prd.12254. PMid:30892769.

2 Bergamo ETP, Zahoui A, Barrera RB, Huwais S, Coelho PG, Karateew ED, et al. Osseodensification effect on implants primary and secondary stability: multicenter controlled clinical trial. Clin Implant Dent Relat Res. 2021 Jun;23(3):317-28. http://dx.doi.org/10.1111/cid.13007. PMid:34047046.

3 Koutouzis T, Huwais S, Hasan F, Trahan W, Waldrop T, Neiva R. Alveolar ridge expansion by osseodensification-mediated plastic deformation and compaction autografting: a multicenter retrospective study. Implant Dent. 2019 Aug;28(4):349-55. http://dx.doi.org/10.1097/ID.0000000000000898. PMid:31274667.

4 Yu X, Chang C, Guo W, Wu Y, Zhou W, Yu D. Primary implant stability based on alternative site preparation techniques: a systematic review and meta-analysis. Clin Implant Dent Relat Res. 2022 Oct;24(5):580-90. http://dx.doi.org/10.1111/cid.13127. PMid:35950637.

5 Leocádio ACS, Silva MS Jr, Oliveira GJPL, Pinto GDCS, Faeda RS, Padovan LEM, et al. Evaluation of Implants with Different Macrostructures in Type I Bone-Pre-Clinical Study in Rabbits. Materials (Basel). 2020 Mar;13(7):1521. http://dx.doi.org/10.3390/ma13071521. PMid:32224982.

6 Coyac BR, Leahy B, Salvi G, Hoffmann W, Brunski JB, Helms JA. A preclinical model links osseo-densification due to misfit and osseo-destruction due to stress/strain. Clin Oral Implants Res. 2019 Dec;30(12):1238-49. http://dx.doi.org/10.1111/clr.13537. PMid:31520494.

7 Silva GAF, Faot F, Possebon APDR, Silva WJ, Del Bel Cury AA. Effect of macrogeometry and bone type on insertion torque, primary stability, surface topography damage and titanium release of dental implants during surgical insertion into artificial bone. J Mech Behav Biomed Mater. 2021 Jul;119:104515. http://dx.doi.org/10.1016/j.jmbbm.2021.104515. PMid:33932754.

8 Gehrke SA, Aramburú J Jr, Treichel TLE, Prado TD, Dedavid BA, Aza PN. Effects of insertion torque values on the marginal bone loss of dental implants installed in sheep mandibles. Sci Rep. 2022 Jan;12(1):538. http://dx.doi.org/10.1038/s41598-021-04313-5. PMid:35017552.

9 Byun SH, Kim SH, Cho S, Lee H, Lim HK, Kim JW, et al. Tissue expansion improves the outcome and predictability for alveolar bone augmentation: prospective, multicenter, randomized controlled trial. J Clin Med. 2020 Apr;9(4):1143. http://dx.doi.org/10.3390/jcm9041143. PMid:32316310.

10 Stacchi C, Bernardello F, Spinato S, Mura R, Perelli M, Lombardi T, et al. Intraoperative complications and early implant failure after transcrestal sinus floor elevation with residual bone height ≤5 mm: a retrospective multicenter study. Clin Oral Implants Res. 2022 Aug;33(8):783-91. http://dx.doi.org/10.1111/clr.13959. PMid:35578774.

11 Gaikwad AM, Joshi AA, Nadgere JB. Biomechanical and histomorphometric analysis of endosteal implants placed by using the osseodensification technique in animal models: a systematic review and meta-analysis. J Prosthet Dent. 2022 Jan;127(1):61-70. http://dx.doi.org/10.1016/j.prosdent.2020.07.004. PMid:33139057.

12 Witek L, Alifarag AM, Tovar N, Lopez CD, Gil LF, Gorbonosov M, et al. Osteogenic parameters surrounding trabecular tantalum metal implants in osteotomies prepared via osseodensification drilling. Med Oral Patol Oral Cir Bucal. 2019 Nov;24(6):e764-9. http://dx.doi.org/10.4317/medoral.23108. PMid:31655837.

13 Delgado-Ruiz R, Gold J, Somohano Marquez T, Romanos G. Under-drilling versus hybrid osseodensification technique: differences in implant primary stability and bone density of the implant bed walls. Materials (Basel). 2020 Jan;13(2):390. http://dx.doi.org/10.3390/ma13020390. PMid:31952138.

14 Slete FB, Olin P, Prasad H. Histomorphometric comparison of 3 osteotomy techniques. Implant Dent. 2018 Aug;27(4):424-8. http://dx.doi.org/10.1097/ID.0000000000000767. PMid:29762184.

15 Trisi P, Berardini M, Falco A, Podaliri Vulpiani M. New Osseodensification implant site preparation method to increase bone density in low-density bone: in vivo evaluation in sheep. Implant Dent. 2016 Feb;25(1):24-31. http://dx.doi.org/10.1097/ID.0000000000000358. PMid:26584202.

16 Oliveira GJ, Barros-Filho LA, Barros LA, Queiroz TP, Marcantonio E Jr. In vitro evaluation of the primary stability of short and conventional implants. J Oral Implantol. 2016 Dec;42(6):458-63. http://dx.doi.org/10.1563/aaid-joi-D-16-00094. PMid:27455447.

17 Barros LA, Silva CF, Camargos GV, Marcantonio E Jr, Oliveira GJ, Barros-Filho LA. In vitro evaluation of the influence of bone cortical thickness on the primary stability of conventional- and short-sized implants. J Clin Exp Dent. 2022 Feb;14(2):e138-43. http://dx.doi.org/10.4317/jced.58886. PMid:35173896.

18 Padhye NM, Padhye AM, Bhatavadekar NB. Osseodensification -- a systematic review and qualitative analysis of published literature. J Oral Biol Craniofac Res. 2020 Jan-Mar;10(1):375-80. http://dx.doi.org/10.1016/j.jobcr.2019.10.002. PMid:31737477.

19 Barberá-Millán J, Larrazábal-Morón C, Enciso-Ripoll JJ, Pérez-Pevida E, Chávarri-Prado D, Gómez-Adrián MD. Evaluation of the primary stability in dental implants placed in low density bone with a new drilling technique, osseodensification: an in vitro study. Med Oral Patol Oral Cir Bucal. 2021 May;26(3):e361-7. http://dx.doi.org/10.4317/medoral.24231. PMid:33037795.

20 Tian JH, Neiva R, Coelho PG, Witek L, Tovar NM, Lo IC, et al. Alveolar ridge expansion: comparison of osseodensification and conventional osteotome techniques. J Craniofac Surg. 2019 Mar/Apr;30(2):607-10. http://dx.doi.org/10.1097/SCS.0000000000004956. PMid:30507887.

21 Oliveira PGFP, Bergamo ETP, Neiva R, Bonfante EA, Witek L, Tovar N, et al. Osseodensification outperforms conventional implant subtractive instrumentation: a study in sheep. Mater Sci Eng C Mater Biol Appl. 2018 Sep;90:300-7. http://dx.doi.org/10.1016/j.msec.2018.04.051. PMid:29853095.

22 Mello-Machado RC, Sartoretto SC, Granjeiro JM, Calasans-Maia JA, Uzeda MJPG, Mourão CFAB, et al. Osseodensification enables bone healing chambers with improved low-density bone site primary stability: an in vivo study. Sci Rep. 2021 Jul;11(1):15436. http://dx.doi.org/10.1038/s41598-021-94886-y. PMid:34326400.

23 Yeniyol S, Jimbo R, Marin C, Tovar N, Janal MN, Coelho PG. The effect of drilling speed on early bone healing to oral implants. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013 Nov;116(5):550-5. http://dx.doi.org/10.1016/j.oooo.2013.07.001. PMid:24055149.

24 Seo DU, Kim SG, Oh JS, Lim SC. Comparative study on early osseointegration of implants according to various drilling speeds in the mandible of dogs. Implant Dent. 2017 Dec;26(6):841-7. http://dx.doi.org/10.1097/ID.0000000000000673. PMid:29068799.

25 Landazuri-Del Barrio RA, Nunes de Paula W, Spin-Neto R, Chaves de Souza JA, Pimentel Lopes de Oliveira GJ, Marcantonio-Junior E. Effect of 2 different drilling speeds on the osseointegration of implants placed with flapless guided surgery: a study in rabbits. Implant Dent. 2017 Oct;26(6):882-7. http://dx.doi.org/10.1097/ID.0000000000000654. PMid:28984664.
 


Submitted date:
11/15/2022

Accepted date:
11/16/2022

63b46759a953957a5e565905 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections