Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/doi/10.1590/1807-2577.03324
Revista de Odontologia da UNESP
Original Article

Efeito de uma membrana bioativa sobre a regeneração óssea guiada de defeitos críticos de calvária

Effect of a bioactive membrane on guided bone regeneration of critical calvary defects

Flavio Fidêncio de LIMA; Matheus UZAI; Natalia Nunes de SOUZA; Suzana Peres PIMENTEL; Fabiano Ribeiro CIRANO; Raissa Micaella Marcello MACHADO; Andrea Rodrigues Esposito CABRERA; Marcio Zaffalon CASATI; Mônica Grazieli CORRÊA

Downloads: 0
Views: 41

Resumo

Introdução: A regeneração óssea guiada (ROG) é uma abordagem que tem vindo a tornar-se cada vez mais conhecida por promover um tratamento regenerativo bem-sucedido. Esta técnica consiste na utilização de barreiras físicas para isolar a área a regenerar da influência não osteogénica das células do tecido conjuntivo gengival, protegendo o coágulo formado no espaço entre a barreira e o tecido ósseo preexistente.

Objetivo: Determinar o efeito da regeneração óssea guiada (ROG) por meio do uso de uma membrana com propriedade bioativa, composta por polímeros ácido polilático (PLA), policaprolactona (PCL) e polietileno glicol (PEG), associada à incorporação de bioativos sintéticos [beta-tricálcio fosfato (β-TCF), hidroxiapatita (HA) e nano-HA], no reparo ósseo em defeitos de calvária em ratos.

Material e método: Para isso, 21 ratos foram distribuídos nos grupos: Teste (n=7): Membrana Bioativa; Controle Positivo (n=7): Membrana BioGide®; Controle Negativo (n=7): sem biomaterial. Os animais foram submetidos à confecção de dois defeitos de calvária de tamanho crítico de 5mm de diâmetro. Quatro semanas após a confecção dos defeitos, ocorreu a eutanásia dos animais e as calvárias foram processadas para análise histológica e histomorfométrica.

Resultado: o grupo controle positivo (Bio-Gide) apresentou maior fechamento do defeito ósseo, em comparação ao grupo teste (Membrana Bioativa) e ao controle negativo (sem tratamento).

Conclusão: Dentro dos limites do presente estudo, pode-se concluir que o uso da Membrana com propriedade Bioativa não proporcionou regeneração óssea dos defeitos críticos em calvária de ratos.

Palavras-chave

Regeneração óssea guiada; membrana bioativa; defeito calvária

Abstract

Introduction: Guided bone regeneration (GBR) is an approach that has become increasingly well known for promoting successful regenerative treatment. This technique consists of using physical barriers to isolate the area to be regenerated from the non-osteogenic influence of gingival connective tissue cells, protecting the clot formed in the space between the barrier and the pre-existing bone tissue.

Objective: This study aimed at determining the effect of guided bone regeneration using a membrane with polylactic acid polymers by polylactic acid polymers), polycaprolactone (PCL) and polyethylenel (PEG) associated with the incorporation of bioactives [beta-tricalcium (β -TCF), hydroxyapatite (HA) and nano-HA], in the repair of calvaria repair in rats.

Material and method: For this, 21 rats were divided into groups: Test (=7): Bioactive Membrane; Positive Control (n=7): BioGide® Membrane; Negative Control (n=7): no treatment. Two critical defects were created in each animal at the start of the study (day 0). The animals were euthanized after 4 weeks of defects creation and the calvaria defects were processed for histological and histomorphometric analysis.

Result: The results indicate that the positive control group (Bio-Gide) presented grater closure of the bone defects compared to the test group (Bioactive Membrane) and the negative control (no treatment).

Conclusion: The use of the bioactive membrane did not promote bone generation (GBR) of calvaria defects in rats.

Keywords

Guided bone regeneration; bioactive membrane; calvaria defect

References

1 Aghaloo TL, Moy PK. Which hard tissue augmentation techniques are the most successful in furnishing bony support for implant placement? Int J Oral Maxillofac Implants. 2007;22(Suppl):49-70. PMid:18437791.

2 Altiparmak N, Akdeniz SS, Akcay EY, Bayram B, Araz K. Effect of induced membrane on guided bone regeneration in an experimental calvarial model. J Craniofac Surg. 2020 May/Jun;31(3):879-83. http://doi.org/10.1097/SCS.0000000000006154. PMid:31934967.

3 Casarin RC, Casati MZ, Pimentel SP, Cirano FR, Algayer M, Pires PR, et al. Resveratrol improves bone repair by modulation of bone morphogenetic proteins and osteopontin gene expression in rats. Int J Oral Maxillofac Implants. 2014 Jul;43(7):900-6. http://doi.org/10.1016/j.ijom.2014.01.009. PMid:24530035.

4 Brignardello-Petersen R. Membrane exposure may decrease the benefits of guided bone regeneration on bone levels in the short term. J Am Dent Assoc. 2018 Aug;149(8):e119. http://doi.org/10.1016/j.adaj.2018.02.009. PMid:29653671.

5 Carbonell JM, Martín IS, Santos A, Pujol A, Sanz-Moliner JD, Nart J. High-density polytetrafluoroethylene membranes in guided bone and tissue regeneration procedures: a literature review. Int J Oral Maxillofac Implants. 2014 Jan;43(1):75-84. http://doi.org/10.1016/j.ijom.2013.05.017. PMid:23810680.

6 Chang YY, Lee JS, Kim MS, Choi SH, Chai JK, Jung UW. Comparison of collagen membrane and bone substitute as a carrier for rhBMP-2 in lateral onlay graft. Clin Oral Implants Res. 2015;26(1):e13-9. http://doi.org/10.1111/clr.12320. PMid:24350566.

7 Nociti FH Jr, Caffesse RG, Sallum EA, Machado MA, Stefani CM, Sallum AW. Evaluation of guided bone regeneration and/or bone grafts in the treatment of ligature-induced peri-implantitis defects: a morphometric study in dogs. J Oral Implantol. 2000;26(4):244-9. http://doi.org/10.1563/1548-1336(2000)026<0244:EOGBRA>2.3.CO;2. PMid:11831229.

8 Shim JH, Yoon MC, Jeong CM, Jang J, Jeong SI, Cho DW, et al. Efficacy of rhBMP-2 loaded PCL/PLGA/β-TCP guided bone regeneration membrane fabricated by 3D printing technology for reconstruction of calvaria defects in rabbit. Biomed Mater. 2014 Nov;9(6):065006. http://doi.org/10.1088/1748-6041/9/6/065006. PMid:25384105.

9 Teng SH, Lee EJ, Wang P, Shin DS, Kim HE. Three-layered membranes of collagen/hydroxyapatite and chitosan for guided bone regeneration. J Biomed Mater Res B Appl Biomater. 2008 Oct;87B(1):132-8. http://doi.org/10.1002/jbm.b.31082. PMid:18395825.

10 Ribeiro FV, Suaid FF, Ruiz KG, Rodrigues TL, Carvalho MD, Nociti FH Jr, et al. Effect of autologous bone marrow-derived cells associated with guided bone regeneration or not in the treatment of peri-implant defects. Int J Oral Maxillofac Implants. 2012 Jan;41(1):121-7. http://doi.org/10.1016/j.ijom.2011.06.025. PMid:21924867.

11 Ji W, Yang F, Ma J, Bouma MJ, Boerman OC, Chen Z, et al. Incorporation of stromal cell-derived factor-1α in PCL/gelatin electrospun membranes for guided bone regeneration. Biomaterials. 2013 Jan;34(3):735-45. http://doi.org/10.1016/j.biomaterials.2012.10.016. PMid:23117215.

12 Cirano FR, Pimentel SP, Casati MZ, Corrêa MG, Pino DS, Messora MR, et al. Effect of curcumin on bone tissue in the diabetic rat: repair of peri-implant and critical-sized defects. Int J Oral Maxillofac Implants. 2018 Nov;47(11):1495-503. http://doi.org/10.1016/j.ijom.2018.04.018. PMid:29857981.

13 Garagiola U, Grigolato R, Soldo R, Bacchini M, Bassi G, Roncucci R, et al. Computer-aided design/computer-aided manufacturing of hydroxyapatite scaffolds for bone reconstruction in jawbone atrophy: a systematic review and case report. Maxillofac Plast Reconstr Surg. 2016 Jan;38(1):2. http://doi.org/10.1186/s40902-015-0048-7. PMid:26767187.

14 Buser D, Urban I, Monje A, Kunrath MF, Dahlin C. Guided bone regeneration in implant dentistry: basic principle, progress over 35 years, and recent research activities. Periodontol 2000. 2023;93(1):9-25. http://doi.org/10.1111/prd.12539. PMid:38194351.

15 Khojasteh A, Kheiri L, Motamedian SR, Khoshkam V. Guided bone regeneration for the reconstruction of alveolar bone defects. Ann Maxillofac Surg. 2017 Jul-Dec;7(2):263-77. http://doi.org/10.4103/ams.ams_76_17. PMid:29264297.

16 Martinez EF, Rodrigues AEA, Teixeira LN, Esposito AR, Cabrera WIR, Demasi APD, et al. Histological evaluation of a new beta- tricalcium phosphate/ hydroxyapatite/poly (1Lactide- Co - Caprolactone) compodite biomaterial in the inflammatory process and repair of critical bone defects. Symmetry (Basel). 2019 Nov;11(11):1356. http://doi.org/10.3390/sym11111356.

17 Garcia J, Dodge A, Luepke P, Wang HL, Kapila Y, Lin GH. Effect of membrane exposure on guided bone regeneration: a systematic review and meta-analysis. Clin Oral Implants Res. 2018 Mar;29(3):328-38. http://doi.org/10.1111/clr.13121. PMid:29368353.

18 Hao J, Acharya A, Chen K, Chou J, Kasugai S, Lang NP. Novel bioresorbable strontium hydroxyapatite membrane for guided bone regeneration. Clin Oral Implants Res. 2015;26(1):1-7. http://doi.org/10.1111/clr.12289. PMid:24191781.

19 Horowitz R, Holtzclaw D, Rosen PS. A review on alveolar ridge preservation following tooth extraction. J Evid Based Dent Pract. 2012 Sep;12(3 Suppl):149-60. http://doi.org/10.1016/S1532-3382(12)70029-5. PMid:23040345.

20 Teotia AK, Raina DB, Singh C, Sinha N, Isaksson H, Tägil M, et al. Nano-hydroxyapatite bone substitute functionalized with bone active molecules for enhanced cranial bone regeneration. ACS Appl Mater Interfaces. 2017 Mar;9(8):6816-28. http://doi.org/10.1021/acsami.6b14782. PMid:28171719.

21 Jo JY, Jeong SI, Shin YM, Kang SS, Kim SE, Jeong CM, et al. Sequential delivery of BMP-2 and BMP-7 for bone regeneration using a heparinized collagen membrane. Int J Oral Maxillofac Implants. 2015 Jul;44(7):921-8. http://doi.org/10.1016/j.ijom.2015.02.015. PMid:25769221.

22 Casati MZ, Sallum EA, Nociti FH Jr, Caffesse RG, Sallum AW. Enamel matrix derivative and bone healing after guided bone regeneration in dehiscence-type defects around implants. A histomorphometric study in dogs. J Periodontol. 2002 Jul;73(7):789-96. http://doi.org/10.1902/jop.2002.73.7.789. PMid:12146539.

23 Lee S-H, Lee K-G, Hwang J-H, Cho YS, Lee K-S, Jeong H-J, et al. Evaluation of mechanical strength and bone regeneration ability of 3D printed kagome-structure scaffold using rabbit calvarial defect model. Mater Sci Eng C. 2019 May;98:949-59. http://doi.org/10.1016/j.msec.2019.01.050. PMid:30813102.

24 Messora MR, Nagata MJ, Mariano RC, Dornelles RC, Bomfim SR, Fucini SE, et al. Bone healing in critical-size defects treated with platelet-rich plasma: a histologic and histometric study in rat calvaria. J Periodontal Res. 2008 Apr;43(2):217-23. http://doi.org/10.1111/j.1600-0765.2007.01017.x. PMid:18302625.

25 Elgali I, Omar O, Dahlin C, Thomsen P. Guided bone regeneration: materials and biological mechanisms revisited. Eur J Oral Sci. 2017 Oct;125(5):315-37. http://doi.org/10.1111/eos.12364. PMid:28833567.

26 Pino DS, Casarin RC, Pimentel SP, Cirano FR, Corrêa MG, Ribeiro FV. Effect of resveratrol on critical-sized calvarial defects of diabetic rats: histometric and gene expression analysis. J Oral Maxillofac Surg. 2017 Dec;75(12):2561.e1-10. http://doi.org/10.1016/j.joms.2017.07.167. PMid:28859925.

27 Gentile P, Chiono V, Tonda-Turo C, Ferreira AM, Ciardelli G. Polymeric membranes for guided bone regeneration. Biotechnol J. 2011 Oct;6(10):1187-97. http://doi.org/10.1002/biot.201100294. PMid:21932249.

28 Proussaefs P, Lozada J. The use of resorbable collagen membrane in conjunction with autogenous bone graft and inorganic bovine mineral for buccal/labial alveolar ridge augmentation: a pilot study. J Prosthet Dent. 2003 Dec;90(6):530-8. http://doi.org/10.1016/S0022-3913(03)00521-3. PMid:14668753.

29 Zitzmann NU, Naef R, Schärer P. Resorbable versus nonresorbable membranes in combination with Bio-Oss for guided bone regeneration. Int J Oral Maxillofac Implants. 1997 Nov-Dec;12(6):844-52. PMid:9425767.

30 Zablotsky M, Meffert R, Caudill R, Evans G. Histological and clinical comparisons of guided tissue regeneration on dehisced hydroxylapatite-coated and titanium endosseous implant surfaces: a pilot study. Int J Oral Maxillofac Implants. 1991;6(3):294-303. PMid:1667524.
 


Submitted date:
10/21/2024

Accepted date:
10/30/2024

675c91d8a953957cf23123e2 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections