Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/doi/10.1590/1807-2577.03320
Revista de Odontologia da UNESP
Original Article

Avaliação da interface entre o componente protético reto e a conexão interna tipo Cone Morse do implante dentário por meio da microscopia eletrônica de varredura

Evaluation of the interface between the straight prosthetic component and the Morse Cone-type internal connection of the dental implant in cross section by scanning electron microscopy

Mariana Bispo COSTA; Lorena Fernandes FERREIRA; Wilton Mitsunari TAKESHITA; Antonio Carlos MARQUETI; Cleverson Luciano TRENTO

Downloads: 2
Views: 577

Resumo

Resumo: Introdução: A interface implante-pilar protético e a formação dos seus microgaps são aspectos relevantes na transferência das cargas e na resposta biológica, estando ligadas ao sucesso da reabilitação.

Objetivo: Avaliar microgaps na interface entre a conexão interna do implante do tipo Cone Morse e a superfície do componente protético por meio da microscopia eletrônica de varredura (MEV).

Material e método: Foram utilizados 20 implantes dentários de tamanho 3,75 × 11,0mm do tipo Cone Morse com seus respectivos pilares protéticos da Singular® (Singular Implants, RN, Brasil). Os munhões retos foram acoplados aos implantes com torque de 32N/cm2 e o conjunto resultante foi emergido em base de Resina Epóxi ES260, para permitir secção longitudinal da amostra. As amostras foram analisadas e os microgaps mensurados no MEV (JEOL JCM-5700, MA, USA), e posteriormente os dados foram analisados.

Resultado: A média e o desvio padrão dos maiores microgaps foram observados na parte apical do implante nos lados direito e esquerdo, sendo 1,44±2,68 e 1,16±1,49 μm, respectivamente. Os menores microgaps foram na parte superior do implante nos lados direito e esquerdo, sendo 0,60±0,73 e 0,66±0,67 μm, respectivamente. Contudo, no teste de Kruskal-Wallis, não houve diferença estatisticamente significativa entre as regiões dos implantes, tanto para o lado esquerdo (p=0,692) como para o direito (p=0,865). No teste de Mann-Whitney, não houve diferenças estatisticamente significativas entre os lados para as diferentes regiões dos implantes.

Conclusão: Mesmo com a presença de microgaps na interface implante-pilar protético, estes apresentam tamanho inferior ao que causaria problemas biológicos e mecânicos. As amostras analisadas quanto à sua compatibilidade de encaixe foram satisfatórias.

Palavras-chave

Implantes dentários, pilares protéticos, microscopia eletrônica de varredura

Abstract

Abstract: Introduction: The implant-prosthetic abutment interface and the formation of its microgaps are relevant aspects in load transfer and biological response and are linked to the success of the rehabilitation.

Objective: To evaluate microgaps at the internal connection interface of the Cone Morse implant and the prosthetic component surface by means of scanning electron microscopy (SEM).

Material and method: Twenty 3.75 x 11.0 mm Cone Morse dental implants with their respective Singular® prosthetic abutments were used (Singular Implants, RN, Brazil). The straight trunnions were attached to the implants with a 32N/cm2 torque and the ES260 Epoxy Resin-based set emerged to allow longitudinal sectioning of the sample. The samples were analyzed and the microgaps measured in SEM (JEOL JCM-5700, MA, USA), and later the data were analyzed.

Result: The mean and standard deviation of the largest microgaps were observed in the apical part of the right and left side 1.44±2.68 and 1.16±1.49 μm, respectively. The smallest microgaps were on the upper implant right and left sides 0.60±0.73 and 0.66±0.67 μm, respectively. However, in the Kruskal-Wallis test there was no statistically significant difference between the implant regions, both for the left side (p=0.692) and right side (p=0.865). The Mann-Whitney test, there were no statistically significant differences between the sides for the different regions of the implants.

Conclusion: Even with the presence of microgaps in the implant-post interface, it presents a smaller size than the one presenting biological and mechanical problems. The samples analyzed for their fitting compatibility were satisfactory.
 

Keywords

Dental implants, dental abutments, scanning electron microscopy

References

1 Lorenzoni FC, Coelho PG, Bonfante G, Carvalho RM, Silva NRFA, Suzuki M, et al. Sealing capability and SEM observation of the implant-abutment interface. Int J Dent. 2011;2011:864183. http://dx.doi.org/10.1155/2011/864183. PMid:21754934.

2 Gehrke SA, Shibli JA, Aramburú JS Jr, Sánchez de Val JEM, Calvo-Girardo JL, Dedavid BA. Effects of different torque levels on the implant-abutment interface in a conical internal connection. Braz Oral Res. 2016;30(1):e40. http://dx.doi.org/10.1590/1807-3107BOR-2016.vol30.0040. PMid:26981760.

3 Passos SP, Gressler May L, Faria R, Özcan M, Bottino MA. Implant-abutment gap versus microbial colonization: clinical significance based on a literature review. J Biomed Mater Res B Appl Biomater. 2013 Oct;101(7):1321-8. http://dx.doi.org/10.1002/jbm.b.32945. PMid:23661560.

4 Coelho AL, Suzuki M, Dibart S, Da Silva N, Coelho PG. Cross-sectional analysis of the implant – abutment interface. J Oral Rehabil. 2007 Jul;34(7):508-16. http://dx.doi.org/10.1111/j.1365-2842.2007.01714.x. PMid:17559619.

5 Scarano A, Valbonetti L, Degidi M, Pecci R, Piattelli A, de Oliveira PS, et al. Implant-abutment contact surfaces and microgap measurements of different implant connections under 3-dimensional X-Ray microtomography. Implant Dent. 2016 Oct;25(5):656-62. http://dx.doi.org/10.1097/ID.0000000000000465. PMid:27551879.

6 Dias ECLCM, Sperandio M, Napimoga MH. Association between implant-abutment microgap and implant circularity to bacterial leakage: an in vitro study using tapered connection implants. Int J Oral Maxillofac Implants. 2018 May-June;33(3):505-11. http://dx.doi.org/10.11607/jomi.5836. PMid:28938028.

7 Jörn D, Kohorst P, Besdo S, Borchers L, Stiesch M. Three-dimensional nonlinear finite element analysis and microcomputed tomography evaluation of microgap formation in a dental implant under oblique loading. Int J Oral Maxillofac Implants. 2016 May-Jun;31(3):e32-42. http://dx.doi.org/10.11607/jomi.4179. PMid:27183080.

8 Liu Y, Wang J. Influences of microgap and micromotion of implant: abutment interface on marginal bone loss around implant neck. Arch Oral Biol. 2017 Nov;83:153-60. http://dx.doi.org/10.1016/j.archoralbio.2017.07.022. PMid:28780384.

9 Romanos GE, Biltucci MT, Kokaras A, Paster BJ. Bacterial composition at the implant-abutment connection under loading in vivo. Clin Implant Dent Relat Res. 2016 Feb;18(1):138-45. http://dx.doi.org/10.1111/cid.12270. PMid:25195711.

10 Alves DCC, Carvalho PSP, Martinez EF. In vitro microbiological analysis of bacterial seal at the implant- abutment interface using two morse taper implant models. Braz Dent J. 2014 Feb;25(1):48-53. http://dx.doi.org/10.1590/0103-6440201302178. PMid:24789292.

11 Alqutaibi AY, Aboalrejal AN. Microgap and micromotion at the implant abutment interface cause marginal bone loss around dental implant but more evidence is needed. J Evid Based Dent Pract. 2018;18(2):171-2. http://dx.doi.org/10.1016/j.jebdp.2018.03.009. PMid:29747801.

12 Gois DM Fo, Gois-Santos VT, Silva RS, Marqueti AC, Cortes ARG, Trento CL. Evaluation of sealing between abutment and inner connection of cone morse dental implant: microgaps between implant and abutment. Clin Lab Res Dent. 2018;2018:1-6. https://doi.org/10.11606/issn.2357-8041.clrd.2018.147797.

13 Koutouzis T, Gadalla H, Lundgren T. Bacterial colonization of the implant-abutment interface (IAI) of dental implants with a sloped marginal design: an in-vitro study. Clin Implant Dent Relat Res. 2016 Feb;18(1):161-7. http://dx.doi.org/10.1111/cid.12287. PMid:25623033.

14 Barbosa GAS, Neves FD, Mattos MGC, Rodrigues RCS, Ribeiro RF. Implant/abutment vertical misfit of one-piece cast frameworks made with different materials. Braz Dent J. 2010;21(6):515-9. http://dx.doi.org/10.1590/S0103-64402010000600006. PMid:21271041.

15 Aloise JP, Curcio R, Laporta MZ, Rossi L, Silva AMA, Rapoport A. Microbial leakage through the implant – abutment interface of morse taper implants in vitro. Clin Oral Implants Res. 2010 Mar;21(3):328-35. http://dx.doi.org/10.1111/j.1600-0501.2009.01837.x. PMid:20074246.

16 Ranieri R, Ferreira A, Souza E, Arcoverde J, Dametto F, Gade-Neto C, et al. The bacterial sealing capacity of morse taper implant-abutment systems in vitro. J Periodontol. 2015;86(5):696-702. http://dx.doi.org/10.1902/jop.2015.140623. PMid:25658884.

17 Grobecker-Karl T, Karl M. correlation between micromotion and gap formation at the implant-abutment interface. Int J Prosthodont. 2017 Mar/Apr;30(2):150-2. http://dx.doi.org/10.11607/ijp.5086. PMid:28267824.

18 Souza RS, Suffredini IB, Cortizo DL, Larsson A, Nannmark U, Dib LL. In vitro analysis of the implant-abutment interface connection and bacterial infiltration in two extraoral implant models. Int J Oral Maxillofac Implants. 2020 Jan/Feb;35(1):63-9. http://dx.doi.org/10.11607/jomi.7692. PMid:31923290.

19 Duraisamy R, Krishnan CS, Ramasubramanian H, Sampathkumar J, Mariappan S, Navarasampatti Sivaprakasam A. Compatibility of nonoriginal abutments with implants: evaluation of microgap at the implant-abutment interface, with original and nonoriginal abutments. Implant Dent. 2019 Jun;28(3):289-95. http://dx.doi.org/10.1097/ID.0000000000000885. PMid:31124826.

20 Lopes PA, Carreiro AFP, Nascimento RM, Vahey BR, Henriques B, Souza JCM. Physicochemical and microscopic characterization of implant–abutment joints. Eur J Dent. 2018 Jan-Mar;12(1):100-4. http://dx.doi.org/10.4103/ejd.ejd_3_17. PMid:29657532.

21 Ceruso FM, Barnaba P, Mazzoleni S, Ottria L, Gargari M, Zuccon A, et al. Implant-abutment connections on single crowns: a systematic review. Oral Implantol. 2017 Oct-Dec;10(4):349-53. http://dx.doi.org/10.11138/orl/2017.10.4.349. PMid:29682251.

22 Zanardi PR, Costa B, Stegun RC, Sesma N, Mori M, Laganá DC. Connecting accuracy of interchanged prosthetic abutments to different dental implants using scanning electron microscopy. Braz Dent J. 2012 Oct;23(5):502-7. http://dx.doi.org/10.1590/S0103-64402012000500006. PMid:23306225.
 


Submitted date:
05/05/2020

Accepted date:
08/13/2020

5f7731ea0e88250332655167 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections