Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/doi/10.1590/1807-2577.03222
Revista de Odontologia da UNESP
Original Article

Effect of acid challenge and photoactivation distance on microhardness and roughness of flow bulk-fill composite resins

Efeito do desafio ácido e distância de fotoativação na microdureza e rugosidade de resinas compostas bulk-fill flow

Luana FRANK; Waldemir Francisco VIEIRA JUNIOR; Roberta Tarkany BASTING; Cecília Pedroso TURSSI; Flávia Lucisano Botelho do AMARAL; Fabiana Mantovani Gomes FRANÇA

Downloads: 0
Views: 342

Abstract

Abstract: Introduction: composite resins are indicated to the reconstruction of proximal walls and the evaluation of properties of flow bulk-fill composite resins exposed to acid challenge is necessary.

Objective: to evaluate the microhardness and roughness at different depths of photoactivation of bulk-fill flow composites (Filtek Bulk Fill Flow; SureFil SDR Flow; Tetric N Ceram Bulk fill) and conventional composite resin (control, Filtek Z350 XT) subjected to acid challenge.

Material and method: forty composites brick shaped specimens (3x3x4 mm) were made using a polyacetal matrix. To simulate pH challenges, the samples were immersed in a demineralizing solution. Each sample had Knoop microhardness (KHN) and roughness (Ra) evaluated at three depths (superficial, medium, and cervical), considering the lateral surface of the sample. Data were submitted to Kruskal-Wallis, Friedman's and Dunn's tests with a significance level of 5%.

Result: comparing the composites among themselves, in superficial (p=0.693), medium (p=0.053) and cervical (p=0.176) regions, there was no difference in the KHN values. There were also no differences in roughness between the composites in superficial (p=0.356), medium (p=0.734) and cervical (p=0.207) regions. Only the Filtek Z350 XT (p=0.027) showed less difference in KHN in the middle region caused by acid challenge. Changes in roughness showed that the greatest difference was at the cervical region for Bulk Fill Flow SDR (p=0.014) and Tetric N-Ceram Bulk Fill (p = 0.003) with an increase after acid challenge.

Conclusion: after acid challenge, bulk-fill flow composites showed alterations similar to those presented by the conventional nanoparticulate resin composite.

Keywords

Composite resins, dental restoration, dental caries

Resumo

Resumo: Introdução: as resinas compostas são indicadas para reconstrução de paredes proximais e a avaliação das propriedades das resinas compostas bulk-fill flow expostas ao desafio ácido mostra-se necessária.

Objetivo: avaliar a microdureza e rugosidade em diferentes profundidades de fotoativação de resinas compostas bulk-fill flow (Filtek Bulk Fill Flow; SureFil SDR Flow; Tetric N Ceram Bulk fill) e convencional (controle, Filtek Z350 XT) submetidas ao desafio ácido.

Material e método: quarenta amostras retangulares (3x3x4 mm) foram confeccionadas utilizando uma matriz de poliacetal. Para simular o desafio ácido, as amostras foram imersas em uma solução desmineralizante. Cada amostra teve a microdureza Knoop (KHN) e rugosidade (Ra) avaliadas em três profundidades (superficial, média e cervical), considerando a superfície lateral da amostra. Os dados foram submetidos aos testes de Kruskal-Wallis, Friedman e Dunn com nível de significância de 5%.

Resultado: comparando as resinas compostas entre si, nas regiões superficial (p=0,693), média (p=0,053) e cervical (p=0,176), não houve diferença nos valores de KHN. Também não houve diferenças na rugosidade entre os materiais nas regiões superficial (p=0,356), média (p=0,734) e cervical (p=0,207). Apenas o Filtek Z350 XT (p=0,027) apresentou menor diferença de KHN na região intermediária causada pelo desafio ácido. As mudanças na rugosidade mostraram que a maior diferença foi na região cervical para Bulk Fill Flow SDR (p=0,014) e Tetric N-Ceram Bulk Fill (p=0,003), com aumento após o desafio ácido.

Conclusão: após desafio ácido, as resinas compostas bulk-fill flow apresentaram alterações semelhantes às apresentadas pela resina composta convencional nanoparticulada.
 

Palavras-chave

Resinas compostas, restauração dentária, cárie dentária

References

1 Peutzfeldt A, Mühlebach S, Lussi A, Flury S. Marginal gap formation in approximal “bulk fill” resin composite restorations after artificial ageing. Oper Dent. 2018 Mar/Apr;43(2):180-9. http://dx.doi.org/10.2341/17-068-L. PMid:29148914.

2 Loguercio AD, Rezende M, Gutierrez MF, Costa TF, Armas-Vega A, Reis A. Randomized 36-month follow-up of posterior bulk-filled resin composite restorations. J Dent. 2019 Jun;85:93-102. http://dx.doi.org/10.1016/j.jdent.2019.05.018. PMid:31100332.

3 Eweis AH, Yap AU, Yahya NA. Impact of dietary solvents on flexural properties of bulk-fill composites. Saudi Dent J. 2018 Jul;30(3):232-9. http://dx.doi.org/10.1016/j.sdentj.2018.04.002. PMid:29942108.

4 Marí LG, Gil AC, Puy CL. In vitro evaluation of microleakage in class II composite restorations: high-viscosity bulk-fill vs conventional composites. Dent Mater J. 2019 Jul;38(5):721-7. http://dx.doi.org/10.4012/dmj.2018-160. PMid:31231103.

5 Shebl S, Abdel-Karim UM, Abdalla A, Elkafrawy H, Valanezhad A, Watanabe I. Shrinkage stress of high and low viscosity bulk‐fill composites with incremental and bulk fill techniques. Tanta Dent J. 2018;15(4):224-33. http://dx.doi.org/10.4103/tdj.tdj_18_18.

6 Sousa-Lima RX, Silva L, Chaves L, Geraldeli S, Alonso R, Borges B. Extensive assessment of the physical, mechanical, and adhesion behavior of a low-viscosity bulk fill composite and a traditional resin composite in tooth cavities. Oper Dent. 2017 Sep/Oct;42(5):E159-66. http://dx.doi.org/10.2341/16-299-L. PMid:28829935.

7 Fronza BM, Ayres A, Pacheco RR, Rueggeberg FA, Dias C, Giannini M. Characterization of inorganic filler content, mechanical properties, and light transmission of bulk-fill resin composites. Oper Dent. 2017 Jul/Aug;42(4):445-55. http://dx.doi.org/10.2341/16-024-L. PMid:28402731.

8 Leprince JG, Palin WM, Vanacker J, Sabbagh J, Devaux J, Leloup G. Physico-mechanical characteristics of commercially available bulk-fill composites. J Dent. 2014 Aug;42(8):993-1000. http://dx.doi.org/10.1016/j.jdent.2014.05.009. PMid:24874951.

9 Engelhardt F, Hahnel S, Preis V, Rosentritt M. Comparison of flowable bulk-fill and flowable resin-based composites: an in vitro analysis. Clin Oral Investig. 2016 Nov;20(8):2123-30. http://dx.doi.org/10.1007/s00784-015-1700-4. PMid:26745959.

10 Veloso SRM, Lemos CAA, Moraes SLD, Vasconcelos BCE, Pellizzer EP, Monteiro GQM. Clinical performance of bulk-fill and conventional resin composite restorations in posterior teeth: a systematic review and meta-analysis. Clin Oral Investig. 2019 Jan;23(1):221-33. http://dx.doi.org/10.1007/s00784-018-2429-7. PMid:29594349.

11 Van Ende A, Munck J, Lise DP, Van Meerbeek B. Bulk-fill composites: a review of the current literature. J Adhes Dent. 2017;19(2):95-109. http://dx.doi.org/10.3290/j.jad.a38141. PMid:28443833.

12 Gerula-Szymańska A, Kaczor K, Lewusz-Butkiewicz K, Nowicka A. Marginal integrity of flowable and packable bulk fill materials used for class II restorations - a systematic review and meta-analysis of in vitro studies. Dent Mater J. 2020 Jun;39(3):335-44. http://dx.doi.org/10.4012/dmj.2018-180. PMid:31932546.

13 Münchow EA, Ferreira AC, Machado RM, Ramos TS, Rodrigues-Junior SA, Zanchi CH. Effect of acidic solutions on the surface degradation of a micro-hybrid composite resin. Braz Dent J. 2014;25(4):321-6. http://dx.doi.org/10.1590/0103-6440201300058. PMid:25250496.

14 Eweis AH, Yap AU, Yahya NA. Dynamic analysis of bulk-fill composites: effect of food-simulating liquids. J Mech Behav Biomed Mater. 2017 Oct;74:183-8. http://dx.doi.org/10.1016/j.jmbbm.2017.06.004. PMid:28605721.

15 Aromaa MK, Lassila LVJ, Vallittu PK. Effect of distance on light transmission through polymerized resin composite. Eur J Prosthodont Restor Dent. 2017 Sep;25(3):131-5. http://dx.doi.org/10.1922/EJPRD_01700Aromaa05. PMid:28869366.

16 Price RB, Labrie D, Whalen JM, Felix CM. Effect of distance on irradiance and beam homogeneity from 4 light-emitting diode curing units. J Can Dent Assoc. 2011;77:b9. PMid:21507291.

17 Felix CA, Price RB. The effect of distance from light source on light intensity from curing lights. J Adhes Dent. 2003;5(4):283-91. PMid:15008335.

18 Barbosa RP, Pereira-Cenci T, Silva WM, Coelho-de-Souza FH, Demarco FF, Cenci MS. Effect of cariogenic biofilm challenge on the surface hardness of direct restorative materials in situ. J Dent. 2012 May;40(5):359-63. http://dx.doi.org/10.1016/j.jdent.2012.01.012. PMid:22326721.

19 El-Damanhoury H, Platt PA. Polymerization shrinkage stress kinetics and related properties of bulk-fill resin composites. Oper Dent. 2014 Jul-Aug;39(4):374-82. http://dx.doi.org/10.2341/13-017-L. PMid:23865582.

20 Pereira R, Lima DANL, Giorgi MCC, Marchi GM, Aguiar FHB. Evaluation of bond strength, nanoleakage, and marginal adaptation of bulk-fill composites submitted to thermomechanical aging. J Adhes Dent. 2019;21(3):255-64. http://dx.doi.org/10.3290/j.jad.a42547. PMid:31165105.

21 Ilie N, Bucuta S, Draenert M. Bulk-fill resin-based composites: an in vitro assessment of their mechanical performance. Oper Dent. 2013 Nov-Dec;38(6):618-25. http://dx.doi.org/10.2341/12-395-L. PMid:23570302.

22 Ilie N, Hickel R. Investigations on a methacrylate-based flowable composite based on the SDR™ technology. Dent Mater. 2011 Apr;27(4):348-55. http://dx.doi.org/10.1016/j.dental.2010.11.014. PMid:21194743.

23 Nascimento AS, Rodrigues JFB, Torres RHN, Santos KO, Fook MVL, Albuquerque MS, et al. Physicomechanical and thermal analysis of bulk-fill and conventional composites. Braz Oral Res. 2019 Mar;33:e008. http://dx.doi.org/10.1590/1807-3107bor-2019.vol33.0008. PMid:30892408.

24 Bucuta S, Ilie N. Light transmittance and micro-mechanical properties of bulk fill vs. conventional resin based composites. Clin Oral Investig. 2014 Nov;18(8):1991-2000. http://dx.doi.org/10.1007/s00784-013-1177-y. PMid:24414570.

25 Kaya MS, Bakkal M, Durmus A, Durmus Z. Structural and mechanical properties of a giomer-based bulk fill restorative in different curing conditions. J Appl Oral Sci. 2018;26:e20160662. http://dx.doi.org/10.1590/1678-7757-2016-0662. PMid:29364336.

26 Rueggeberg FA. State-of-the-art: dental photocuring - a review. Dent Mater. 2011 Jan;27(1):39-52.. http://dx.doi.org/10.1016/j.dental.2010.10.021. PMid:21122903.

27 Tanthanuch S, Kukiattrakoon B, Eiam-O-Pas K, Pokawattana K, Pamanee N, Thongkamkaew W, et al. Surface changes of various bulk-fill resin-based composites after exposure to different food-simulating liquid and beverages. J Esthet Restor Dent. 2018 Mar;30(2):126-35. http://dx.doi.org/10.1111/jerd.12349. PMid:29171163.

28 Bollen CM, Lambrechts P, Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dent Mater. 1997 Jul;13(4):258-69. http://dx.doi.org/10.1016/S0109-5641(97)80038-3. PMid:11696906.

29 Bellinaso MD, Soares FZM, Rocha RO. Do bulk-fill resins decrease the restorative time in posterior teeth? A systematic review and meta-analysis of in vitro studies. J Investig Clin Dent. 2019 Nov;10(4):e12463. http://dx.doi.org/10.1111/jicd.12463. PMid:31560449.
 


Submitted date:
10/01/2022

Accepted date:
10/20/2022

6393870fa9539508503a9634 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections