Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/doi/10.1590/1807-2577.02823
Revista de Odontologia da UNESP
Review Article

The biological effects of different LED wavelengths in the health field. A review

Os efeitos biológicos de diferentes comprimentos de onda de LED na área da saúde. Uma revisão

Juliana Cabrini CARMELLO; Paula Aboud BARBUGLI; Cláudia Carolina JORDÃO; Rui OLIVEIRA; Ana Claudia PAVARINA

Downloads: 1
Views: 521

Abstract

Introduction: the use of light emitting diodes (LED) in domestic and public vias have increased in the last 20 years. In addition, the LED light has been used as a light source for medical applications.

Objective: since humans are increasingly exposed to LEDs, there is an urgency to investigate the possible biological effects on tissues caused by this exposure. So, researchers have been focused their investigations in the application of this light in the health field.

Material and method: in this review, a search in important databases was performed on the biological effects caused after application of different LED light protocols in in vitro and in vivo studies.

Result: although most published papers have shown positive results, some of them reported negative biological effects of light LEDs technology on humans’ cells/tissues.

Conclusion: therefore, the comprehension of the biological effects caused by light LEDs will provide a better assessment of the risks involved using this technology.

Keywords

Phototherapy, light emitting diode, LED, light sources, LED biological effects

Resumo

Introdução: o uso de diodos emissores de luz (“LED”) em vias domésticas e públicas tem aumentado nos últimos 20 anos. Além disso, a luz LED tem sido usada para aplicações médicas.

Objetivo: pelo fato de seres humanos estarem cada vez mais expostos aos LEDs, há urgência em investigar os possíveis efeitos biológicos nos tecidos causados por esta exposição. Assim, pesquisadores têm focado suas investigações no uso desta luz na área da saúde.

Material e método: nesta revisão foi realizada uma pesquisa em bancos de dados conceituados sobre os efeitos biológicos causados após aplicação de diferentes protocolos de luz LED em estudos in vitro e in vivo.

Resultado: embora a maioria dos artigos publicados tenham mostrado resultados positivos, alguns deles relataram efeitos biológicos negativos da tecnologia de LEDs nas células/tecidos humanos.

Conclusão: portanto, a compreensão dos efeitos biológicos causados pela luz LED proporcionará uma melhor avaliação dos riscos envolvidos no uso desta tecnologia.

Palavras-chave

Fototerapia, diodo emissor de luz, LED, fontes de luz, efeitos biológicos do LED

References

1 Chaves MEA, Araújo AR, Piancastelli ACC, Pinotti M. Effects of low-power light therapy on wound healing: LASER x LED. An Bras Dermatol. 2014 Jul-Aug;89(4):616-23. http://dx.doi.org/10.1590/abd1806-4841.20142519. PMid:25054749.

2 Behar-Cohen F, Martinsons C, Viénot F, Zissis G, Barlier-Salsi A, Cesarini JP, et al. Light-emitting diodes (LED) for domestic lighting: any risks for the eye? Prog Retin Eye Res. 2011 Jul;30(4):239-57. http://dx.doi.org/10.1016/j.preteyeres.2011.04.002. PMid:21600300.

3 Xie C, Li X, Tong J, Gu Y, Shen Y. Effects of white light-emitting diode (LED) light exposure with different correlated color temperatures (CCTs) on human lens epithelial cells in culture. Photochem Photobiol. 2014 Jul-Aug;90(4):853-9. http://dx.doi.org/10.1111/php.12250. PMid:24483628.

4 Jagdeo J, Austin E, Mamalis A, Wong C, Ho D, Siegel DM. Light-emitting diodes in dermatology: a systematic review of randomized controlled trials. Lasers Surg Med. 2018 Jan;50(6):613-28. http://dx.doi.org/10.1002/lsm.22791. PMid:29356026.

5 Calderhead RG. The photobiological basics behind light-emitting diode (LED) phototherapy. Laser Ther. 2007 Jan;16(2):97-108. http://dx.doi.org/10.5978/islsm.16.97.

6 Opel DR, Hagstrom E, Pace AK, Sisto K, Hirano-Ali SA, Desai S, et al. Light-emitting diodes: a brief review and clinical experience. J Clin Aesthet Dermatol. 2015 Jun;8(6):36-44. PMid:26155326.

7 Heiskanen V, Hamblin MR. Photobiomodulation: lasers vs. light emitting diodes? Photochem Photobiol Sci. 2018 Aug;17(8):1003-17. http://dx.doi.org/10.1039/c8pp00176f. PMid:30044464.

8 ClinicalTrials.gov. FDAAA 801 and the final rule [Internet]. Bethesda: ClinicalTrials.gov; 2023 [cited 2023 Oct 26]. Available from: http://clinicaltrials.gov/ct2/manage-recs/fdaaa

9 Barolet D, Duplay P, Jacomy H, Auclair M. Importance of pulsing illumination parameters in low-level-light therapy. J Biomed Opt. 2010 Jul-Aug;15(4):048005. http://dx.doi.org/10.1117/1.3477186. PMid:20799848.

10 Kim HK, Kim JH, Abbas AA, Kim DO, Park SJ, Chung JY, et al. Red light of 647 nm enhances osteogenic differentiation in mesenchymal stem cells. Lasers Med Sci. 2009 Mar;24(2):214-22. http://dx.doi.org/10.1007/s10103-008-0550-6. PMid:18386092.

11 Guo J, Wang Q, Wai D, Zhang QZ, Shi SH, Le AD, et al. Visible red and infrared light alters gene expression in human marrow stromal fibroblast cells. Orthod Craniofac Res. 2015 Apr;18(Suppl 1):50-61. http://dx.doi.org/10.1111/ocr.12081. PMid:25865533.

12 Lee SY, Park KH, Choi JW, Kwon JK, Lee DR, Shin MS, et al. A prospective, randomized, placebo-controlled, double-blinded, and split-face clinical study on LED phototherapy for skin rejuvenation: clinical, profilometric, histologic, ultrastructural, and biochemical evaluations and comparison of three different treatment settings. J Photochem Photobiol B. 2007 Jul;88(1):51-67. http://dx.doi.org/10.1016/j.jphotobiol.2007.04.008. PMid:17566756.

13 Whelan HT, Connelly JF, Hodgson BD, Barbeau L, Post AC, Bullard G, et al. NASA light-emitting diodes for the prevention of oral mucositis in pediatric bone marrow transplant patients. J Clin Laser Med Surg. 2002 Dec;20(6):319-24. http://dx.doi.org/10.1089/104454702320901107. PMid:12513918.

14 Corti L, Chiarion-Sileni V, Aversa S, Ponzoni A, D’Arcais R, Pagnutti S, et al. Treatment of chemotherapy-induced oral mucositis with light-emitting diode. Photomed Laser Surg. 2006 Apr;24(2):207-13. http://dx.doi.org/10.1089/pho.2006.24.207. PMid:16706701.

15 Barolet D, Boucher A. LED photoprevention: reduced MED response following multiple LED exposures. Lasers Surg Med. 2008 Feb;40(2):106-12. http://dx.doi.org/10.1002/lsm.20615. PMid:18306161.

16 Barolet D, Roberge CJ, Auger FA, Boucher A, Germain L. Regulation of skin collagen metabolism in vitro using a pulsed 660 nm LED light source: clinical correlation with a single-blinded study. J Invest Dermatol. 2009 Dec;129(12):2751-9. http://dx.doi.org/10.1038/jid.2009.186. PMid:19587693.

17 Nam CH, Park BC, Kim MH, Choi EH, Hong SP. The efficacy and safety of 660 nm and 411 to 777 nm light-emitting devices for treating wrinkles. Dermatol Surg. 2017 Mar;43(3):371-80. http://dx.doi.org/10.1097/DSS.0000000000000981. PMid:28195844.

18 Sousa AP, Paraguassú GM, Silveira NT, Souza J, Cangussú MC, Santos JN, et al. Laser and LED phototherapies on angiogenesis. Lasers Med Sci. 2013 May;28(3):981-7. http://dx.doi.org/10.1007/s10103-012-1187-z. PMid:22923269.

19 Liebmann J, Born M, Kolb-Bachofen V. Blue-light irradiation regulates proliferation and differentiation in human skin cells. J Invest Dermatol. 2010 Jan;130(1):259-69. http://dx.doi.org/10.1038/jid.2009.194. PMid:19675580.

20 Malčić AI, Pavičić I, Trošić I, Simeon P, Katanec D, Krmek SJ. The effects of bluephase LED light on fibroblasts. Eur J Dent. 2012 Jul;6(3):311-7. http://dx.doi.org/10.1055/s-0039-1698966. PMid:22904660.

21 Lev-Tov H, Mamalis A, Brody N, Siegel D, Jagdeo J. Inhibition of fibroblast proliferation in vitro using red light-emitting diodes. Dermatol Surg. 2013 Aug;39(8):1167-70. http://dx.doi.org/10.1111/dsu.12212. PMid:23590233.

22 Taflinski L, Demir E, Kauczok J, Fuchs PC, Born M, Suschek CV, et al. Blue light inhibits transforming growth factor-β1-induced myofibroblast differentiation of human dermal fibroblasts. Exp Dermatol. 2014 Apr;23(4):240-6. http://dx.doi.org/10.1111/exd.12353. PMid:24533842.

23 Knels L, Valtink M, Roehlecke C, Lupp A, de la Vega J, Mehner M, et al. Blue light stress in retinal neuronal (R28) cells is dependent on wavelength range and irradiance. Eur J Neurosci. 2011 Aug;34(4):548-58. http://dx.doi.org/10.1111/j.1460-9568.2011.07790.x. PMid:21781192.

24 Matsumoto N, Yoshikawa K, Shimada M, Kurita N, Sato H, Iwata T, et al. Effect of light irradiation by light emitting diode on colon cancer cells. Anticancer Res. 2014 Sep;34(9):4709-16. PMid:25202048.

25 Yan G, Zhang L, Feng C, Gong R, Idiiatullina E, Huang Q, et al. Blue light emitting diodes irradiation causes cell death in colorectal cancer by inducing ROS production and DNA damage. Int J Biochem Cell Biol. 2018 Oct;103:81-8. http://dx.doi.org/10.1016/j.biocel.2018.08.006. PMid:30125666.

26 Taoufik K, Mavrogonatou E, Eliades T, Papagiannoulis L, Eliades G, Kletsas D. Effect of blue light on the proliferation of human gingival fibroblasts. Dent Mater. 2008 Jul;24(7):895-900. http://dx.doi.org/10.1016/j.dental.2007.10.006. PMid:18164382.

27 Tanaka K, Hashimoto H, Tachibana T, Ishikawa H, Ohki T. Apoptosis in the small intestine of neonatal rat using blue light-emitting diode devices and conventional halogen-quartz devices in phototherapy. Pediatr Surg Int. 2008 Jul;24(7):837-42. http://dx.doi.org/10.1007/s00383-008-2170-4. PMid:18470518.

28 Benders MJ, Van Bel F, Van de Bor M. Cardiac output and ductal reopening during phototherapy in preterm infants. Acta Paediatr. 1999 Sep;88(9):1014-9. http://dx.doi.org/10.1111/j.1651-2227.1999.tb00199.x. PMid:10519346.

29 Aycicek A, Erel O. Total oxidant/antioxidant status in jaundiced newborns before and after phototherapy. J Pediatr. 2007 Jul-Aug;83(4):319-22. http://dx.doi.org/10.2223/JPED.1645. PMid:17625638.

30 Ortín-Martínez A, Valiente-Soriano FJ, García-Ayuso D, Alarcón-Martínez L, Jiménez-López M, Bernal-Garro JM, et al. A novel in vivo model of focal light emitting diode-induced cone-photoreceptor phototoxicity: neuroprotection afforded by brimonidine, BDNF, PEDF or bFGF. PLoS One. 2014 Dec;9(12):e113798. http://dx.doi.org/10.1371/journal.pone.0113798. PMid:25464513.

31 Krigel A, Berdugo M, Picard E, Levy-Boukris R, Jaadane I, Jonet L, et al. Light-induced retinal damage using different light sources, protocols and rat strains reveals LED phototoxicity. Neuroscience. 2016 Dec;339:296-307. http://dx.doi.org/10.1016/j.neuroscience.2016.10.015. PMid:27751961.

32 Lin CH, Wu MR, Huang WJ, Chow DS, Hsiao G, Cheng YW. Low-luminance blue light-enhanced phototoxicity in A2E-Laden RPE cell cultures and rats. Int J Mol Sci. 2019 Apr;20(7):1799. http://dx.doi.org/10.3390/ijms20071799. PMid:30979028.

33 Tosini G, Ferguson I, Tsubota K. Effects of blue light on the circadian system and eye physiology. Mol Vis. 2016 Jan;22:61-72. PMid:26900325.

34 Tokarz P, Kaarniranta K, Blasiak J. Role of antioxidant enzymes and small molecular weight antioxidants in the pathogenesis of age-related macular degeneration (AMD). Biogerontology. 2013 Oct;14(5):461-82. http://dx.doi.org/10.1007/s10522-013-9463-2. PMid:24057278.

35 McDaniel DH, Weiss RA, Geronemus R, Ginn L, Newman J. Light–tissue interactions I: photothermolysis versus photomodulation laboratory findings. Lasers Surg Med. 2002 Jan;14:25.

36 Weiss RA, McDaniel DH, Geronemus RG, Weiss MA. Clinical trial of a novel non-thermal LED array for reversal of photoaging: clinical, histologic, and surface profilometric results. Lasers Surg Med. 2005 Feb;36(2):85-91. http://dx.doi.org/10.1002/lsm.20107. PMid:15654716.

37 DeLand MM, Weiss RA, McDaniel DH, Geronemus RG. Treatment of radiation-induced dermatitis with light-emitting diode (LED) photomodulation. Lasers Surg Med. 2007 Feb;39(2):164-8. http://dx.doi.org/10.1002/lsm.20455. PMid:17311276.

38 McDaniel DH, Weiss RA, Geronemus RG, Mazur C, Wilson S, Weiss MA. Varying ratios of wavelengths in dual wavelength LED photomodulation alters gene expression profiles in human skin fibroblasts. Lasers Surg Med. 2010 Aug;42(6):540-5. http://dx.doi.org/10.1002/lsm.20947. PMid:20662030.

39 Jaadane I, Boulenguez P, Chahory S, Carré S, Savoldelli M, Jonet L, et al. Retinal damage induced by commercial light emitting diodes (LEDs). Free Radic Biol Med. 2015 Jul;84:373-84. http://dx.doi.org/10.1016/j.freeradbiomed.2015.03.034. PMid:25863264.

40 Nam CH, Park BC, Kim MH, Choi EH, Hong SP. The efficacy and safety of 660 nm and 411 to 777 nm light-emitting devices for treating wrinkles. Dermatol Surg. 2017 Mar;43(3):371-80. http://dx.doi.org/10.1097/DSS.0000000000000981. PMid:28195844.

41 Simpson CR, Kohl M, Essenpreis M, Cope M. Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. Phys Med Biol. 1998 Sep;43(9):2465-78. http://dx.doi.org/10.1088/0031-9155/43/9/003. PMid:9755939.

42 Kim WS, Calderhead RG. Is light-emitting diode phototherapy (LED-LLLT) really effective? Laser Ther. 2011;20(3):205-15. http://dx.doi.org/10.5978/islsm.20.205. PMid:24155530.

43 Oliveira MF, Johnson DS, Demchak T, Tomazoni SS, Leal-Junior EC. Low-intensity LASER and LED (photobiomodulation therapy) for pain control of the most common musculoskeletal conditions. Eur J Phys Rehabil Med. 2022 Apr;58(2):282-9. http://dx.doi.org/10.23736/S1973-9087.21.07236-1. PMid:34913330.

44 Herpich CM, Leal-Junior ECP, Politti F, Gomes CAFP, Glória IPS, Amaral MFRS, et al. Intraoral photobiomodulation diminishes pain and improves functioning in women with temporomandibular disorder: a randomized, sham-controlled, double-blind clinical trial. Lasers Med Sci. 2020 Mar;35(2):439-45. http://dx.doi.org/10.1007/s10103-019-02841-1. PMid:31325122.

45 Alonso JR, Turrioni AP, Basso FG, Costa CAS, Hebling J. Synthesis of dental matrix proteins and viability of odontoblast-like cells irradiated with blue LED. Lasers Med Sci. 2016 Apr;31(3):523-30. http://dx.doi.org/10.1007/s10103-016-1889-8. PMid:26873499.

46 Kadalraja R, Patole SK, Muller R, Whitehall JS. Is mesenteric blood flow compromised during phototherapy in preterm neonates? Arch Dis Child Fetal Neonatal Ed. 2004 Nov;89(6):F564. http://dx.doi.org/10.1136/adc.2004.057646. PMid:15499160.

47 Dennery PA, Lorch S. Neonatal blue-light phototherapy could increase the risk of dysplastic nevus development. Pediatrics. 2007;120(1):247-8. http://dx.doi.org/10.1542/peds.2007-0844. PMid:17606593.

48 Furchgott RF. Endothelium-dependent relaxation, endothelium-derived relaxing factor and photorelaxation of blood vessels. Semin Perinatol. 1991 Feb;15(1):11-5. PMid:2063224.

49 Wu PY, Wong WH, Hodgman JE, Levan N. Changes in blood flow in the skin and muscle with phototherapy. Pediatr Res. 1974 Apr;8(4):257-62. http://dx.doi.org/10.1203/00006450-197404000-00007. PMid:4822668.

50 Aycicek A, Kocyigit A, Erel O, Senturk H. Phototherapy causes DNA damage in peripheral mononuclear leukocytes in term infants. J Pediatr. 2008;84(2):141-6. http://dx.doi.org/10.2223/JPED.1765. PMid:18350230.

51 Alaimo A, Liñares GG, Bujjamer JM, Gorojod RM, Alcon SP, Martínez JH, et al. Toxicity of blue led light and A2E is associated to mitochondrial dynamics impairment in ARPE-19 cells: implications for age-related macular degeneration. Arch Toxicol. 2019 May;93(5):1401-15. http://dx.doi.org/10.1007/s00204-019-02409-6. PMid:30778631.

52 Touitou Y, Point S. Effects and mechanisms of action of light-emitting diodes on the human retina and internal clock. Environ Res. 2020 Nov;190:109942. http://dx.doi.org/10.1016/j.envres.2020.109942. PMid:32758719.

53 O’Hagan JB, Khazova M, Price LL. Low-energy light bulbs, computers, tablets and the blue light hazard. Eye. 2016 Feb;30(2):230-3. http://dx.doi.org/10.1038/eye.2015.261. PMid:26768920.

54 Dai X, Jin S, Xuan Y, Yang Y, Lu X, Wang C, et al. 590 nm LED irradiation improved erythema through inhibiting angiogenesis of human microvascular endothelial cells and ameliorated pigmentation in melasma. Cells. 2022 Dec;11(24):3949. http://dx.doi.org/10.3390/cells11243949. PMid:36552713.

55 Chamorro E, Bonnin-Arias C, Pérez-Carrasco MJ, Muñoz de Luna J, Vázquez D, Sánchez-Ramos C. Effects of light-emitting diode radiations on human retinal pigment epithelial cells in vitro. Photochem Photobiol. 2013 Mar-Apr;89(2):468-73. http://dx.doi.org/10.1111/j.1751-1097.2012.01237.x. PMid:22989198.

56 Yoshida A, Yoshino F, Makita T, Maehata Y, Higashi K, Miyamoto C, et al. Reactive oxygen species production in mitochondria of human gingival fibroblast induced by blue light irradiation. J Photochem Photobiol B. 2013 Dec;129:1-5. http://dx.doi.org/10.1016/j.jphotobiol.2013.09.003. PMid:24141287.

57 Buravlev EA, Zhidkova TV, Osipov AN, Vladimirov YA. Are the mitochondrial respiratory complexes blocked by NO the targets for the laser and LED therapy? Lasers Med Sci. 2015 Jan;30(1):173-80. http://dx.doi.org/10.1007/s10103-014-1639-8. PMid:25118663.

58 Lev-Tov H, Mamalis A, Brody N, Siegel D, Jagdeo J. Inhibition of fibroblast proliferation in vitro using red light-emitting diodes. Dermatol Surg. 2013 Aug;39(8):1167-70. http://dx.doi.org/10.1111/dsu.12212. PMid:23590233.

59 Rimessi A, Giorgi C, Pinton P, Rizzuto R. The versatility of mitochondrial calcium signals: from stimulation of cell metabolism to induction of cell death. Biochim Biophys Acta. 2008 Jul-Aug;1777(7-8):808-16. http://dx.doi.org/10.1016/j.bbabio.2008.05.449. PMid:18573473.

60 Huang L, Wu S, Xing D. High fluence low-power laser irradiation induces apoptosis via inactivation of Akt/GSK3β signaling pathway. J Cell Physiol. 2011 Mar;226(3):588-601. http://dx.doi.org/10.1002/jcp.22367. PMid:20683916.

61 Sun X, Wu S, Xing D. The reactive oxygen species-Src-Stat3 pathway provokes negative feedback inhibition of apoptosis induced by high-fluence low-power laser irradiation. FEBS J. 2010 Nov;277(22):4789-802. http://dx.doi.org/10.1111/j.1742-4658.2010.07884.x. PMid:20977672.

62 Wu S, Xing D, Gao X, Chen WR. High fluence low-power laser irradiation induces mitochondrial permeability transition mediated by reactive oxygen species. J Cell Physiol. 2009 Mar;218(3):603-11. http://dx.doi.org/10.1002/jcp.21636. PMid:19006121.

63 Koutná M, Janisch R, Veselská R. Effects of low-power laser irradiation on cell proliferation. Scr Med (Brno). 2003 Jun;76(3):163-72.

64 Belletti S, Uggeri J, Mergoni G, Vescovi P, Merigo E, Fornaini C, et al. Effects of 915 nm GaAs diode laser on mitochondria of human dermal fibroblasts: analysis with confocal microscopy. Lasers Med Sci. 2015 Jan;30(1):375-81. http://dx.doi.org/10.1007/s10103-014-1651-z. PMid:25351448.

65 Magrini TD, Santos NV, Milazzotto MP, Cerchiaro G, Martinho HS. Low-level laser therapy on MCF-7 cells: a micro-Fourier transform infrared spectroscopy study. J Biomed Opt. 2012 Oct;17(10):101516. http://dx.doi.org/10.1117/1.JBO.17.10.101516. PMid:23223992.

66 Buravlev EA, Zhidkova TV, Vladimirov YA, Osipov AN. Effects of laser and LED radiation on mitochondrial respiration in experimental endotoxic shock. Lasers Med Sci. 2013 May;28(3):785-90. http://dx.doi.org/10.1007/s10103-012-1155-7. PMid:22797824.

67 Karadag A, Yesilyurt A, Unal S, Keskin I, Demirin H, Uras N, et al. A chromosomal-effect study of intensive phototherapy versus conventional phototherapy in newborns with jaundice. Mutat Res. 2009 May;676(1-2):17-20. http://dx.doi.org/10.1016/j.mrgentox.2009.03.008. PMid:19376266.

68 Freitas LF, Hamblin MR. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron. 2016 May-Jun;22(3):7000417. http://dx.doi.org/10.1109/JSTQE.2016.2561201. PMid:28070154.

69 International Commission on Non-Ionizing Radiation Protection – ICNIRP. ICNIRP Guidelines on Limits of Exposure to Laser Radiation of Wavelengths between 180 nm and 1,000 μm. Health Phys. 2013 Sep;105(3):271-95. http://dx.doi.org/10.1097/HP.0b013e3182983fd4. PMid:30522251.

70 Marshall J. Radiation and the ageing eye. Ophthalmic Physiol Opt. 1985;5(3):241-63. PMid:3900875.

71 Young RW. Solar radiation and age-related macular degeneration. Surv Ophthalmol. 1988 Jan-Feb;32(4):252-69. http://dx.doi.org/10.1016/0039-6257(88)90174-9. PMid:3279560.

72 Remé CE. The dark side of light: rhodopsin and the silent death of vision the proctor lecture. Invest Ophthalmol Vis Sci. 2005 Aug;46(8):2672-82. http://dx.doi.org/10.1167/iovs.04-1095. PMid:16043837.
 


Submitted date:
10/25/2023

Accepted date:
10/26/2023

6560b5e8a953956f7418c363 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections