Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/doi/10.1590/1807-2577.02624
Revista de Odontologia da UNESP
Original Article

Non-radioactive strontium as a supplement to enhance osseointegration

Estrôncio não radioativo como suplemento para melhorar a osseointegração

Cassio Rocha SCARDUELI; Rubens SPIN-NETO; Guilherme José Lopes Pimentel OLIVEIRA; Andreas STAVROPOULOS; Rosemary Adriana Chierici MARCANTONIO; Elcio MARCANTONIO JR

Downloads: 0
Views: 33

Abstract

Introduction: Due to its positive results on bone tissue, strontium also began to be used as an adjuvant in bone neoformation processes, mainly maxillofacial surgical procedures.

Objective: To assess if the non-radioactive strontium (Sr) supplementation enhances the osseointegration of titanium implants in rats.

Material and method: Seventy male rats (Rattus Norvegicus) were randomly divided into 5 groups, according to the systemic supplementation: Control - saline solution; SRAN50 - strontium ranelate (SRAN) 50mg/kg/day; SRAN625 - SRAN 625mg/kg/day; SCAR/SCHL30 - strontium carbonate and strontium chloride (SCAR/SCHL) 30mg/kg/day; SCAR/SCHL365 - SCAR/SCHL 365mg/kg/day. The drugs were administered via gavage, once a day, starting 15 days before surgery (1 titanium implant in each tibia), and persisted for 15 or 60 days. The right tibiae were used for biomechanical (removal torque) and immunohistochemical (Osteocalcin – OCN, and bone morphogenetic protein - BMP-2) evaluation. The left were used for microtomographic, and histomorphometric evaluation.

Result: Increased removal torque for SRAN625 and SCAR/SCHL365 were observed when compared with the Control, in 15 days. However, no differences were found in the 60-days period among the groups. Microtomographic evaluation showed larger bone volume at 60 days, compared to 15 days, for all groups but SCAR/SCHL30. When all groups were compared, no differences were seen in the 15-days period, while in the 60-days SRAN625 and SCAR/SCHL365 were statistically higher than the Control. In the immunohistochemical analysis, higher doses (SRAN625 and SCAR/SCHL365) led to an increase of BMP-2 in 15 days. Histomorphometric analysis revealed no differences among the groups regarding bone-to-implant-contact and bone area around the implant threads.

Conclusion: This study suggests that higher concentrations of systemic Sr lead to variably improved osseointegration-related parameters regarding the biomechanical and microtomographic evaluation.

Keywords

Strontium; systemic use; osseointegration; bone remodeling; implants

Resumo

Introdução: Devido a seus resultados positivos sobre o tecido ósseo o estrôncio passou a ser utilizado também como coadjuvante de processos de neoformação óssea, principalmente procedimentos cirúrgicos maxilo-faciais.

Objetivo: Avaliar se a suplementação de estrôncio (Sr) não radioativo melhora a osseointegração de implantes de titânio em ratos.

Material e método: Setenta ratos machos (Rattus Norvegicus) foram divididos aleatoriamente em 5 grupos, de acordo com a suplementação sistêmica: Controle - solução salina; SRAN50 - ranelato de estrôncio (SRAN) 50mg/kg/dia; SRAN625 - SRAN 625mg/kg/dia; SCAR/SCHL30 - carbonato de estrôncio e cloreto de estrôncio (SCAR/SCHL) 30mg/kg/dia; SCAR/SCHL365 - SCAR/SCHL 365mg/kg/dia. Os medicamentos foram administrados por gavagem, uma vez ao dia, iniciando 15 dias antes da cirurgia (1 implante de titânio em cada tíbia), e persistiram por 15 ou 60 dias. As tíbias direitas foram utilizadas para avaliação biomecânica (torque de remoção) e imuno-histoquímica (Osteocalcina – OCN e proteína morfogenética óssea - BMP-2). As esquerdas foram utilizadas para avaliação microtomográfica e histomorfométrica.

Resultado: Aumento do torque de remoção para SRAN625 e SCAR/SCHL365 foi observado quando comparado ao Controle, em 15 dias. Entretanto, não foram encontradas diferenças no período de 60 dias entre os grupos. A avaliação microtomográfica mostrou maior volume ósseo em 60 dias, comparado a 15 dias, para todos os grupos, exceto SCAR/SCHL30. Quando todos os grupos foram comparados, não foram observadas diferenças no período de 15 dias, enquanto no período de 60 dias SRAN625 e SCAR/SCHL365 foram estatisticamente maiores que o Controle. Na análise imuno-histoquímica, doses maiores (SRAN625 e SCAR/SCHL365) levaram a um aumento de BMP-2 em 15 dias. A análise histomorfométrica não revelou diferenças entre os grupos quanto ao contato osso-implante e área óssea ao redor das roscas do implante.

Conclusão: Este estudo sugere que concentrações mais altas de Sr sistêmico levam a parâmetros relacionados à osseointegração melhorados de forma variável quanto à avaliação biomecânica e microtomográfica.

Palavras-chave

Estrôncio; uso sistêmico; osseointegração; remodelação óssea; implantes

References

1 Blake GM, Fogelman I. Strontium ranelate: a novel treatment for postmenopausal osteoporosis: a review of safety and efficacy. Clin Interv Aging. 2006;1(4):367-75. http://doi.org/10.2147/ciia.2006.1.4.367. PMid:18046914.

2 Reginster JY, Deroisy R, Neuprez A, Hiligsmann M, Zegels B, Bruyere O. Strontium ranelate: new data on fracture prevention and mechanisms of action. Curr Osteoporos Rep. 2009 Sep;7(3):96-102. http://doi.org/10.1007/s11914-009-0016-1. PMid:19723468.

3 Chattopadhyay N, Quinn SJ, Kifor O, Ye C, Brown EM. The calcium-sensing receptor (CaR) is involved in strontium ranelate-induced osteoblast proliferation. Biochem Pharmacol. 2007 Aug;74(3):438-47. http://doi.org/10.1016/j.bcp.2007.04.020. PMid:17531955.

4 Brennan TC, Rybchyn MS, Green W, Atwa S, Conigrave AD, Mason RS. Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br J Pharmacol. 2009 Aug;157(7):1291-300. http://doi.org/10.1111/j.1476-5381.2009.00305.x. PMid:19563530.

5 Reginster JY, Seeman E, De Vernejoul MC, Adami S, Compston J, Phenekos C, et al. Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: Treatment of Peripheral Osteoporosis (TROPOS) study. J Clin Endocrinol Metab. 2005 May;90(5):2816-22. http://doi.org/10.1210/jc.2004-1774. PMid:15728210.

6 Kaufman JM, Audran M, Bianchi G, Braga V, Diaz-Curiel M, Francis RM, et al. Efficacy and safety of strontium ranelate in the treatment of osteoporosis in men. J Clin Endocrinol Metab. 2013 Feb;98(2):592-601. http://doi.org/10.1210/jc.2012-3048. PMid:23341486.

7 Reginster JY, Beaudart C, Neuprez A, Bruyère O. Strontium ranelate in the treatment of knee osteoarthritis: new insights and emerging clinical evidence. Ther Adv Musculoskelet Dis. 2013 Oct;5(5):268-76. http://doi.org/10.1177/1759720X13500862. PMid:24101948.

8 Meunier PJ, Roux C, Ortolani S, Diaz-Curiel M, Compston J, Marquis P, et al. Effects of long-term strontium ranelate treatment on vertebral fracture risk in postmenopausal women with osteoporosis. Osteoporos Int. 2009 Oct;20(10):1663-73. http://doi.org/10.1007/s00198-008-0825-6. PMid:19153678.

9 Ammann P. Strontium ranelate: a physiological approach for an improved bone quality. Bone. 2006 Feb;38(2 Suppl 1):15-8. http://doi.org/10.1016/j.bone.2005.09.023. PMid:16455318.

10 Li YF, Luo E, Feng G, Zhu SS, Li JH, Hu J. Systemic treatment with strontium ranelate promotes tibial fracture healing in ovariectomized rats. Osteoporos Int. 2010 Nov;21(11):1889-97. http://doi.org/10.1007/s00198-009-1140-6. PMid:19957162.

11 Li Y, Li X, Song G, Chen K, Yin G, Hu J. Effects of strontium ranelate on osseointegration of titanium implant in osteoporotic rats. Clin Oral Implants Res. 2012 Sep;23(9):1038-44. http://doi.org/10.1111/j.1600-0501.2011.02252.x. PMid:22117625.

12 Li Y, Feng G, Gao Y, Luo E, Liu X, Hu J. Strontium ranelate treatment enhances hydroxyapatite-coated titanium screws fixation in osteoporotic rats. J Orthop Res. 2010 May;28(5):578-82. http://doi.org/10.1002/jor.21050. PMid:20014319.

13 Dahl SG, Allain P, Marie PJ, Mauras Y, Boivin G, Ammann P, et al. Incorporation and distribution of strontium in bone. Bone. 2001 Apr;28(4):446-53. http://doi.org/10.1016/S8756-3282(01)00419-7. PMid:11336927.

14 Almon RR, Yang E, Lai W, Androulakis IP, DuBois DC, Jusko WJ. Circadian variations in rat liver gene expression: relationships to drug actions. J Pharmacol Exp Ther. 2008 Sep;326(3):700-16. http://doi.org/10.1124/jpet.108.140186. PMid:18562560.

15 de Oliveira GJ, de Paula LG, Spin-Neto R, Stavropoulos A, Spolidório LC, Marcantonio E Jr, et al. Effect of avocado/soybean unsaponifiables on osseointegration: a proof-of-principle preclinical in vivo study. Int J Oral Maxillofac Implants. 2014 Jul-Aug;29(4):949-57. http://doi.org/10.11607/jomi.3498. PMid:25032777.

16 Donath K, Breuner G. A method for the study of undecalcified bones and teeth with attached soft tissues. The Säge-Schliff (sawing and grinding) technique. J Oral Pathol. 1982 Aug;11(4):318-26. http://doi.org/10.1111/j.1600-0714.1982.tb00172.x. PMid:6809919.

17 Conte N No, de Andrade CR, Spolidorio LC, Planeta Cda S, Cruz FC, de Souza Bastos A, et al. Effects of chronic stress and alendronate therapy on the osseointegration of titanium implants. Clin Implant Dent Relat Res. 2014 Oct;16(5):762-71. http://doi.org/10.1111/cid.12046. PMid:23448531.

18 Maïmoun L, Brennan TC, Badoud I, Dubois-Ferriere V, Rizzoli R, Ammann P. Strontium ranelate improves implant osseointegration. Bone. 2010 May;46(5):1436-41. http://doi.org/10.1016/j.bone.2010.01.379. PMid:20116464.

19 Brånemark PI, Adell R, Albrektsson T, Lekholm U, Lundkvist S, Rockler B. Osseointegrated titanium fixtures in the treatment of edentulousness. Biomaterials. 1983 Jan;4(1):25-8. http://doi.org/10.1016/0142-9612(83)90065-0. PMid:6838955.

20 Scardueli CR, Bizelli-Silveira C, Marcantonio RAC, Marcantonio-Jr E, Stavropoulos A, Spin-Neto R. Systemic strontium to the osseointegration of titanium implants in animals: systematic review of the literature. Int J Implant Dent. 2018 Jul;4(1):21. http://doi.org/10.1186/s40729-018-0132-8. PMid:30014305.

21 Linderbäck P, Agholme F, Wermelin K, Närhi T, Tengvall P, Aspenberg P. Weak effect of strontium on early implant fixation in rat tibia. Bone. 2012 Jan;50(1):350-6. http://doi.org/10.1016/j.bone.2011.10.034. PMid:22108138.

22 Pors Nielsen S. The biological role of strontium. Bone. 2004 Sep;35(3):583-8. http://doi.org/10.1016/j.bone.2004.04.026. PMid:15336592.

23 Sakakura CE, Margonar R, Holzhausen M, Nociti FH Jr, Alba RC Jr, Marcantonio E Jr. Influence of cyclosporin A therapy on bone healing around titanium implants: a histometric and biomechanic study in rabbits. J Periodontol. 2003 Jul;74(7):976-81. http://doi.org/10.1902/jop.2003.74.7.976. PMid:12931759.

24 Lv H, Huang X, Jin S, Guo R, Wu W. [Strontium ranelate promotes osteogenic differentiation of rat bone mesenchymal stem cells through bone morphogenetic protein-2/Smad signaling pathway]. Nan Fang Yi Ke Da Xue Xue Bao. 2013 Mar;33(3):376-81. Chinese. PMid: 23529235.

25 Li Z, Wang Y, Wang XN, Lan AP, Wu W. [Strontium ranelate promotes osteogenic differentiation of rat bone marrow mesenchymal stem cells by increasing bone morphogenetic protein-7 expression]. Nan Fang Yi Ke Da Xue Xue Bao. 2011 Nov;31(11):1949-53. Chinese. PMid: 22126789.

26 Ibrahim MRM, Singh S, Merican AM, Raghavendran HR, Murali MR, Naveen SV, et al. The effect of strontium ranelate on the healing of a fractured ulna with bone gap in rabbit. BMC Vet Res. 2016 Jun;12(1):112. http://doi.org/10.1186/s12917-016-0724-6. PMid:27307015.

27 Ejima K, Omasa S, Motoyoshi M, Arai Y, Kai Y, Amemiya T, et al. Influence of metal artifacts on in vivo micro-CT for orthodontic mini-implants. J Oral Sci. 2012 Mar;54(1):55-9. http://doi.org/10.2334/josnusd.54.55. PMid:22466887.

28 Brånemark R, Ohrnell LO, Skalak R, Carlsson L, Brånemark PI. Biomechanical characterization of osseointegration: an experimental in vivo investigation in the beagle dog. J Orthop Res. 1998 Jan;16(1):61-9. http://doi.org/10.1002/jor.1100160111. PMid:9565075.

29 Reginster JY. Cardiac concerns associated with strontium ranelate. Expert Opin Drug Saf. 2014 Sep;13(9):1209-13. http://doi.org/10.1517/14740338.2014.939169. PMid:25020233.

30 Cooper C, Fox KM, Borer JS. Ischaemic cardiac events and use of strontium ranelate in postmenopausal osteoporosis: a nested case-control study in the CPRD. Osteoporos Int. 2014 Feb;25(2):737-45. http://doi.org/10.1007/s00198-013-2582-4. PMid:24322476.
 


Submitted date:
10/04/2024

Accepted date:
10/24/2024

675af84fa9539562781fa465 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections