Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/doi/10.1590/1807-2577.02424
Revista de Odontologia da UNESP
Original Article

Comparative analysis of microgaps in angled and straight components: a laboratory study

Análise comparativa de microgaps em componentes angulares e retos: um estudo de laboratório

Yuri Lins LOBO; Giovanna Nascimento MENDES; Lucas Alves da Mota SANTANA; Lara Gois FLORESTA; Antônio Carlos MARQUETI; Wilton Mitsunari TAKESHITA; Cleverson Luciano TRENTO

Downloads: 0
Views: 109

Abstract

Introduction: The dental implant rehabilitation protocol is a well-established treatment option for edentulous patients with a high success rate. However, there are factors that can lead to difficulty in continuation and even complete loss of rehabilitation. Microgaps are spaces found between the implant and prosthetic abutment that are caused by the limit of precision in the manufacturing of the implant. This space can cause micromovements and bacterial microleakage that can compromise the long-term useful life of the implant.

Objective: Measure and evaluate microgaps in angled and straight implants using scanning electron microscopy. To carry out the study, a total of 30 SIN® osseointegrated implants were used, 15 of which were straight and 15 angled.

Material and method: For the comparative analysis of these components, scanning electron microscopy was used, carried out by a properly calibrated and experienced researcher.

Result: It was observed that the microgap measurements of both components are in accordance with the clinically acceptable values presented in the literature, however the microgap values of the angled components were considerably higher compared to the straight components.

Conclusion: Although the values presented corroborate the data presented in the literature, additional studies are necessary for a more comprehensive and in-depth understanding of the relationship between the microgaps of the morse cone system components.

Keywords

Dental implants; dental implant-abutment design; dentistry

Resumo

Introdução: O protocolo de reabilitação com implantes dentários é uma opção de tratamento bem estabelecida para pacientes desdentados com alta taxa de sucesso. No entanto, existem fatores que podem levar à dificuldade de continuidade e até mesmo à perda completa da reabilitação. Microgaps são espaços encontrados entre o implante e o pilar protético que são causados pelo limite de precisão na fabricação do implante. Esse espaço pode causar micromovimentos e microinfiltração bacteriana que podem comprometer a vida útil do implante a longo prazo.

Objetivo: Medir e avaliar microgaps em implantes angulados e retos usando microscopia eletrônica de varredura. Para a realização do estudo, foram utilizados um total de 30 implantes osseointegrados SIN®, sendo 15 retos e 15 angulados.

Material e método: Para a análise comparativa desses componentes, foi utilizada a microscopia eletrônica de varredura, realizada por pesquisador devidamente calibrado e experiente.

Resultado: Observou-se que as medidas de microgaps de ambos os componentes estão de acordo com os valores clinicamente aceitáveis apresentados na literatura, porém os valores de microgaps dos componentes angulados foram consideravelmente maiores em comparação aos componentes retos.

Conclusão: Embora os valores apresentados corroborem os dados apresentados na literatura, estudos adicionais são necessários para uma compreensão mais abrangente e aprofundada da relação entre os microgaps dos componentes do sistema cone morse.

Palavras-chave

Implantes dentários; projeto do implante dentário-pivô; odontologia

References

1 Cascos R, Celemín-Viñuela A, Mory-Rubiños N, Gómez-Polo C, Ortega R, Agustín-Panadero R, et al. Influence of the use of transepithelial abutments vs. titanium base abutments on microgap formation at the dental implant–abutment interface: an in vitro study. Materials (Basel). 2023;16(19):6532. http://doi.org/10.3390/ma16196532. PMid:37834669.

2 Carlos LV, Carlos NC, Sm Karina L, Sunil BK, Carlos PE, Olga LG. Comparative study of bacterial microfiltration in the implant-abutment interface, with straight and conical internal connections, in vitro. Clin Exp Dent Res. 2021 Dec;7(6):1014-24. http://doi.org/10.1002/cre2.439. PMid:34151544.

3 Baseri M, Radmand F, Hamedi R, Yousefi M, Kafil HS. Immunological aspects of dental implant rejection. BioMed Res Int. 2020 Dec;2020:7279509. http://doi.org/10.1155/2020/7279509. PMid:33376734.

4 Khajavi A, Mohseni S, Peymani A, Amjadi M. In vitro bacterial leakage at the implant-abutment connection of two dental implant systems with internal connection. Front Dent. 2020 Dec;17:32. http://doi.org/10.18502/fid.v17i32.5196. PMid:36042810.

5 Vélez J, Peláez J, López-Suárez C, Agustín-Panadero R, Tobar C, Suárez MJ. Influence of implant connection, abutment design and screw insertion torque on implant-abutment Misfit. J Clin Med. 2020 Jul 24;9(8):2365. https://doi.org/10.3390/jcm9082365. PMid: 32722131.

6 Costa MB, Ferreira LF, Takeshita WM, Marqueti AC, Trento CL. Evaluation of the interface between the straight prosthetic component and the Morse Cone-type internal connection of the dental implant in cross section by scanning electron microscopy. Rev Odontol UNESP. 2020;49:e20200033. http://doi.org/10.1590/1807-2577.03320.

7 Ertem SY, Gungormus M, Ozdogan MS, Orhan M. A microbiological assessment of peri-implant sites and implant-abutment interfaces in diabetic and healthy individuals. Int J Clin Exp Med. 2020;13(1):208-15.

8 Kowalski J, Puszkarz AK, Radwanski M, Sokolowski J, Cichomski M, Bourgi R, et al. Micro-CT evaluation of microgaps at implant-abutment connection. Materials (Basel). 2023 Jun;16(12):4491. http://doi.org/10.3390/ma16124491. PMid:37374674.

9 Liu Y, Wang J. Influences of microgap and micromotion of implant-abutment interface on marginal bone loss around implant neck. Arch Oral Biol. 2017 Nov;83:153-60. http://doi.org/10.1016/j.archoralbio.2017.07.022. PMid:28780384.

10 Mao Z, Beuer F, Wu D, Zhu Q, Yassine J, Schwitalla A, et al. Microleakage along the implant-abutment interface: a systematic review and meta-analysis of in vitro studies. Int J Implant Dent. 2023 Sep;9(1):34. http://doi.org/10.1186/s40729-023-00494-y. PMid:37733145.

11 Mohammadi F, Hajmousaei M, Vaziri N, Arshad M. Bacterial leakage at implant-abutment interface with different intermediate materials. J Oral Implantol. 2019 Dec;45(6):451-5. http://doi.org/10.1563/aaid-joi-D-18-00313. PMid:31580765.

12 Molinero-Mourelle P, Cascos-Sanchez R, Yilmaz B, Lam WYH, Pow EHN, Del Río Highsmith J, et al. Effect of fabrication technique on the microgap of CAD/CAM cobalt-chrome and zirconia abutments on a conical connection implant: an in vitro study. Materials (Basel). 2021 Apr;14(9):2348. http://doi.org/10.3390/ma14092348. PMid:33946477.

13 Vinhas AS, Aroso C, Salazar F, López-Jarana P, Ríos-Santos JV, Herrero-Climent M. Review of the mechanical behavior of different implant-abutment connections. Int J Environ Res Public Health. 2020 Nov;17(22):8685. http://doi.org/10.3390/ijerph17228685. PMid:33238476.

14 Gehrke P, Burg S, Peters U, Beikler T, Fischer C, Rupp F, et al. Bacterial translocation and microgap formation at a novel conical indexed implant abutment system for single crowns. Clin Oral Investig. 2022 Feb;26(2):1375-89. http://doi.org/10.1007/s00784-021-04112-2. PMid:34401947.

15 Lauritano D, Moreo G, Lucchese A, Viganoni C, Limongelli L, Carinci F. The impact of implant-abutment connection on clinical outcomes and microbial colonization: a narrative review. Materials (Basel). 2020 Mar;13(5):1131. http://doi.org/10.3390/ma13051131. PMid:32138368.

16 Associação Brasileira de Normas Técnicas – ABNT. NBR ISO 5832: Implantes para cirurgia - Materiais metálicos. Rio de Janeiro: ABNT; 2008.

17 Ayres M, Ayres M Jr, Ayres DL. BioEstat: aplicações estatísticas nas áreas das ciências biomédicas. 5. ed. Belém: Sociedade Civil Mamirauá; 2007.

18 da Silva-Neto JP, Nóbilo MA, Penatti MP, Simamoto PC Jr, das Neves FD. Influence of methodologic aspects on the results of implant-abutment interface microleakage tests: a critical review of in vitro studies. Int J Oral Maxillofac Implants. 2012 Jul-Aug;27(4):793-800. PMid:22848880.

19 Duraisamy R, Krishnan CS, Ramasubramanian H, Sampathkumar J, Mariappan S, Navarasampatti Sivaprakasam A. Compatibility of nonoriginal abutments with implants: evaluation of microgap at the implant-abutment interface, with original and nonoriginal abutments. Implant Dent. 2019 Jun;28(3):289-95. http://doi.org/10.1097/ID.0000000000000885. PMid:31124826.

20 Lopes PA, Carreiro AFP, Nascimento RM, Vahey BR, Henriques B, Souza JCM. Physicochemical and microscopic characterization of implant-abutment joints. Eur J Dent. 2018 Jan-Mar;12(1):100-4. http://doi.org/10.4103/ejd.ejd_3_17. PMid:29657532.

21 Hermann JS, Schoolfield JD, Schenk RK, Buser D, Cochran DL. Influence of the size of the microgap on crestal bone changes around titanium implants. A histometric evaluation of unloaded non-submerged implants in the canine mandible. J Periodontol. 2001 Oct;72(10):1372-83. http://doi.org/10.1902/jop.2001.72.10.1372. PMid:11699479.

22 Adell R, Lekholm U, Rockler B, Brånemark PI, Lindhe J, Eriksson B, et al. Marginal tissue reactions at osseointegrated titanium fixtures (I). A 3-year longitudinal prospective study. Int J Oral Maxillofac Surg. 1986 Feb;15(1):39-52. http://doi.org/10.1016/S0300-9785(86)80010-2. PMid:3083005.

23 Jemt T, Book K. Prosthesis misfit and marginal bone loss in edentulous implant patients. Int J Oral Maxillofac Implants. 1996 Sep-Oct;11(5):620-5. PMid:8908860.

24 Solá-Ruíz MF, Selva-Otaolaurruchi E, Senent-Vicente G, González-de-Cossio I, Amigó-Borrás V. Accuracy combining different brands of implants and abutments. Med Oral Patol Oral Cir Bucal. 2013 Mar;18(2):e332-6. http://doi.org/10.4317/medoral.18137. PMid:23229250.
 


Submitted date:
09/16/2024

Accepted date:
10/02/2024

673506e2a95395384606a662 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections