Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/doi/10.1590/1807-2577.02321
Revista de Odontologia da UNESP
Original Article

Rubbing ethanol and time of use: critical factors compromising latex gloves structure

Desinfecção com etanol e tempo de uso: fatores críticos que comprometem a estrutura das luvas de látex

Isaac Jordão DE SOUZA ARAÚJO; Talita Malini CARLETTI; Fabianna da Conceição Dantas de MEDEIROS; Isabela Pinheiro Cavalcanti LIMA

Downloads: 1
Views: 297

Abstract

Abstract: Introduction: Personal protective equipment is mandatory to protect patients and professionals from diseases, especially in the dental environment. The risk of gloves micro-perforations is imminent when using sharp instruments or cleaning them up during lengthy clinical procedures.

Objective: This study evaluated the integrity of sterile and non-sterile gloves before clinical use and clarified whether friction with disinfectant solution modifies surface morphology and integrity.

Material and method: Samples of gloves from four different brands were divided into two groups: (1) Sterile surgical gloves (n=260) and (2) Non-sterile gloves (n=260). They were scissored and placed in Ostby’s arch so that three solutions - distilled water, ethanol 70°, ethanol 96° - were rubbed with a cotton swab. After 30s, 5, 10, and 15 minutes of solution rubbing, samples were verified by a Scanning Electron Microscope. The pore sizes were measured by Image J software.

Result: Regardless of the brands, all gloves have been significantly affected by solutions and assessment periods. In general, remarkable changes were evident with ethanol 70° and 96°, and higher pore diameters were observed compared to distilled water.

Conclusion: Rubbing disinfectant solutions increases gloves’ pores sizes, and time negatively influenced its quality.

Keywords

Protective gloves, latex, hand disinfection, porosity, biosafety, dentist

Resumo

Resumo: Introdução: Para proteger pacientes e profissionais de doenças, o uso de equipamentos de proteção individual é obrigatório, principalmente no ambiente odontológico. O risco de microperfurações das luvas é iminente ao usar instrumentos cortantes ou na tentativa de limpar as luvas durante longos procedimentos clínicos.

Objetivo: Este estudo avaliou a integridade das luvas cirúrgicas e de procedimento antes do uso clínico e esclareceu se o atrito com a solução desinfetante modifica a morfologia e integridade da superfície.

Material e método: Amostras de luvas de quatro marcas diferentes foram divididas em dois grupos: (1) Luvas cirúrgicas (n = 260) e (2) Luvas descartáveis não estéreis (n = 260). As luvas foram cortadas e colocadas em arco de Ostby, de modo que três soluções - água destilada, etanol 70 °, etanol 96 ° foram esfregadas com um cotonete. Após 30s, 5, 10 e 15 minutos de fricção das soluções, as amostras foram verificadas utilizando um microscópio eletrônico de varredura. Os tamanhos dos poros foram medidos pelo software Image J.

Resultado: Independentemente das marcas, todas as luvas foram significativamente afetadas por soluções e períodos de avaliação. Em geral, maiores alterações foram evidenciadas com o uso do etanol 70° e 96°, e maiores diâmetros dos poros foram observados quando comparados à água destilada.

Conclusão: Esfregar soluções desinfetantes aumenta o tamanho dos poros das luvas e o tempo influenciou negativamente sua qualidade.
 

Palavras-chave

Luvas de proteção, látex, desinfecção das mãos, porosidade, biosegurança, dentista

References

1 Barabari P, Moharamzadeh K. Novel coronavirus (COVID-19) and dentistry – a comprehensive review of literature. Dent J (Basel). 2020 Jun;8(2):53. http://dx.doi.org/10.3390/dj8020053. PMid:32455612.

2 Centers for Disease Control and Prevention – CDC. Coronavirus disease 2019 (COVID-19). Guidance for dental settings. Atlanta, Geórgia: CDC; 2019. p. 1–12.

3 Amato A, Caggiano M, Amato M, Moccia G, Capunzo M, De Caro F. Infection control in dental practice during the COVID-19 pandemic. Int J Environ Res Public Health. 2020 Jul;17(13):4769. http://dx.doi.org/10.3390/ijerph17134769. PMid:32630735.

4 GOV.UK. COVID-19 Personal Protective Equipment (PPE) [Internet]. United Kingdom; 2020 [cited 2020 Sept 8 ]. Available from: https://www.gov.uk/government/publications/wuhan-novel-coronavirus-infection-prevention-and-control/covid-19-personal-protective-equipment-ppe

5 Gao P, Horvatin M, Niezgoda G, Weible R, Shaffer R. Effect of multiple alcohol-based hand rub applications on the tensile properties of thirteen brands of medical exam nitrile and latex gloves. J Occup Environ Hyg. 2016;13(12):905-14. http://dx.doi.org/10.1080/15459624.2016.1191640. PMid:27224677.

6 Goldman AH, Haug E, Owen JR, Wayne JS, Golladay GJ. high risk of surgical glove perforation from surgical rotatory instruments. Clin Orthop Relat Res. 2016 Nov;474(11):2513-7. http://dx.doi.org/10.1007/s11999-016-4948-3. PMid:27339122.

7 Hentz RV, Traina GC, Cadossi R, Zucchini P, Muglia MA, Giordani M. The protective efficacy of surgical latex gloves against the risk of skin contamination: how well are the operators protected? J Mater Sci Mater Med. 2000 Dec;11(12):825-32. http://dx.doi.org/10.1023/A:1008913814999. PMid:15348067.

8 Kahar Bador M, Rai V, Yusof MY, Kwong WK, Assadian O. Evaluation of the efficacy of antibacterial medical gloves in the ICU setting. J Hosp Infect. 2015 Jul;90(3):248-52. http://dx.doi.org/10.1016/j.jhin.2015.03.009. PMid:25982193.

9 Oriyama T, Yamamoto T, Yanagihara Y, Nara K, Abe T, Nakajima K, et al. Evaluation of the permeation of antineoplastic agents through medical gloves of varying materials and thickness and with varying surface treatments. J Pharm Health Care Sci. 2017 May;3:13. http://dx.doi.org/10.1186/s40780-017-0082-y.

10 Leitgeb J, Schuster R, Yee BN, Chee PF, Harnoss J-C, Starzengruber P, et al. Antibacterial activity of a sterile antimicrobial polyisoprene surgical glove against transient flora following a 2-hours simulated use. BMC Surg. 2015 Jul;15(1):81. http://dx.doi.org/10.1186/s12893-015-0058-5. PMid:26141495.

11 Bardorf MH, Jäger B, Boeckmans E, Kramer A, Assadian O. Influence of material properties on gloves’ bacterial barrier efficacy in the presence of microperforation. Am J Infect Control. 2016 Dec;44(12):1645-9. http://dx.doi.org/10.1016/j.ajic.2016.03.070. PMid:27388267.

12 Vogt KL, Tiba A, Lin DG. ADA professional product review: a laboratory analysis of latex examination gloves. J Am Dent Assoc. 2013 Mar;144(3):312-4. http://dx.doi.org/10.14219/jada.archive.2013.0120. PMid:23449908.

13 Birnbach DJ, Thiesen TC, McKenty NT, Rosen LF, Arheart KL, Fitzpatrick M, et al. Targeted use of alcohol-based hand rub on gloves during task dense periods: one step closer to pathogen containment by anesthesia providers in the operating room. Anesth Analg. 2019 Dec;129(6):1557-60. http://dx.doi.org/10.1213/ANE.0000000000004107. PMid:31743175.

14 Baumann M, Rath B, Fischer JH, Iffland R. The permeability of dental procedure and examination gloves by an alcohol based disinfectant. Dent Mater. 2000 Mar;16(2):139-44. http://dx.doi.org/10.1016/S0109-5641(99)00094-9. PMid:11203535.

15 Krzemińska S, Pośniak M, Szewczyńska M. Resistance of gloves and protective clothing materials to permeation of cytostatic solutions. Int J Occup Med Environ Health. 2018 Jan;31(3):341-50. http://dx.doi.org/10.13075/ijomeh.1896.01140. PMid:29171843.

16 Mäkelä EA, Henriks-Eckerman M-L, Ylinen K, Vuokko A, Suuronen K. Permeation tests of glove and clothing materials against sensitizing chemicals using diphenylmethane diisocyanate as an example. Ann Occup Hyg. 2014 Aug;58(7):921-30. http://dx.doi.org/10.1093/annhyg/meu040. PMid:24936578.

17 Phalen RN, Le T, Wong WK. Changes in chemical permeation of disposable latex, nitrile, and vinyl gloves exposed to simulated movement. J Occup Environ Hyg. 2014;11(11):716-21. http://dx.doi.org/10.1080/15459624.2014.908259. PMid:24689368.

18 Banaee S, Hee SSQ. Glove permeation of chemicals: the state of the art of current practice, part 1: basics and the permeation standards. J Occup Environ Hyg. 2019 Dec;16(12):827-39. http://dx.doi.org/10.1080/15459624.2019.1678754. PMid:31684851.

19 Ceballos DM, Reeb-Whitaker C, Sasakura M, Dills R, Yost MG. Protection efficacy of gloves against components of the solvent in a sprayed isocyanate coating utilizing a reciprocating permeation panel. Ann Occup Hyg. 2015 Apr;59(3):358-72. http://dx.doi.org/10.1093/annhyg/meu099. PMid:25452292.

20 Banaee S, Hee SSQ. Permeation of limonene through disposable nitrile gloves using a dextrous robot hand. J Occup Health. 2017 Mar;59(2):131-8. http://dx.doi.org/10.1539/joh.16-0179-OA. PMid:28111415.

21 Mathews AR, Que Hee SS. Whole glove permeation of cyclohexanol through disposable nitrile gloves on a dextrous robot hand and comparison with the modified closed-loop ASTM F739 method 1. No fist clenching. J Occup Environ Hyg. 2017 Apr;14(4):243-51. http://dx.doi.org/10.1080/15459624.2016.1250005. PMid:27754775.

22 Harnoß J-C, Partecke L-I, Heidecke C-D, Hübner N-O, Kramer A, Assadian O. Concentration of bacteria passing through puncture holes in surgical gloves. Am J Infect Control. 2010 Mar;38(2):154-8. http://dx.doi.org/10.1016/j.ajic.2009.06.013. PMid:19822380.

23 Banaee S, Hee SSQ. Permeation of ethoxy- and butoxy-ethanols through a disposable nitrile glove. Ind Health. 2020 Jun;58(3):276-81. http://dx.doi.org/10.2486/indhealth.2019-0146. PMid:31685784.

24 Wittmann A, Kralj N, Köver J, Gasthaus K, Lerch H, Hofmann F. Comparison of 4 different types of surgical gloves used for preventing blood contact. Infect Control Hosp Epidemiol. 2010 May;31(5):498-502. http://dx.doi.org/10.1086/652158. PMid:20334549.

25 Ramich T, Eickholz P, Wicker S. Work-related infections in dentistry: risk perception and preventive measures. Clin Oral Investig. 2017 Nov;21(8):2473-9. http://dx.doi.org/10.1007/s00784-017-2046-x. PMid:28097434.
 


Submitted date:
04/02/2021

Accepted date:
06/03/2021

60f1828da9539553a676b4a6 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections