Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/doi/10.1590/1807-2577.022315
Revista de Odontologia da UNESP
Original Article

Effects of erosive challenge on the morphology and surface properties of luting cements

Efeito do desafio erosivo na morfologia e propriedades de superfície de agentes cimentantes

Gondim, Brenna Louise Cavalcanti; Medeiros, Isabella Cavalcante; Costa, Bruna Palmeira; Carlo, Hugo Lemes; Santos, Rogério Lacerda dos; Carvalho, Fabíola Galbiatti de

Downloads: 0
Views: 1170

Abstract

Introduction: Few studies investigated the surface properties of luting cements after erosive challenge. Objective: To evaluate the surface roughness (Ra), Vickers hardness (VHN) and morphology of 4 luting cements after erosive challenge. Material and method: Twenty specimens of each cement were prepared (4×2mm) and divided into experimental (erosive challenge) and control (artificial saliva) groups (n=10): Rely X U200 (U200); Rely X ARC (ARC); Ketac Cem Easy Mix (Ketac) and Zinc phosphate (ZnP). The erosive challenge was performed by four daily erosive cycles (90s) in a cola drink and 2 h in artificial saliva over 7 days. Ra and VHN readings were performed before and after erosion. The percentage of hardness loss (%VHN) was obtained after erosion. The surface morphology was analyzed by scanning electron microscopy (SEM). ANOVA, Tukey and Student-T tests were used (α=0.05). Result: After erosion, all luting cements had increase in Ra values and U200 and ZnP groups had the highest %VHN. After saliva immersion, only U200 and ZnP groups had significant increases in Ra values and there were no significant differences among the groups in %VHN. SEM analysis showed that Ketac and ZnP groups had rough and porous surfaces, and U200 group had higher resin matrix degradation than ARC group. Conclusion: Erosive challenge with a cola drink affected the surface properties of all luting cements.

Keywords

Tooth erosion, resin cements, glass ionomer cements, hardness tests.

Resumo

Introdução: Poucos estudos investigaram as propriedades de superfície de cimentos após desafio erosivo. Objetivo: Avaliar a rugosidade da superfície (Ra), dureza Vickers (VHN) e morfologia de superfície de 4 cimentos após desafio erosivo. Material e método: Vinte amostras de cada cimento foram preparadas (4×2mm) e divididas em grupo experimental (desafio erosivo) e controle (saliva artificial) (n=10): Rely X U200 (U200); Rely X ARC (ARC); Ketac Cem Easy Mix (Ketac) e Fosfato de Zinco (ZnP). O desafio erosivo foi realizado com quatro ciclos erosivos diárias (90s) em bebida à base de cola e 2h em saliva artificial durante 7 dias. As leituras de Ra e VHN foram realizadas antes e após erosão. A porcentagem de perda de dureza (%VHN) foi obtida depois da erosão. A morfologia de superfície foi analisada por microscopia eletrônica de varredura (MEV). Foram utilizados testes de ANOVA, Tukey e T-Student (α=0,05). Resultado: Após a erosão, foi observado aumento dos valores de Ra em todos os cimentos testados, e os grupos U200 e ZNP tiveram a maior %VHN. Após imersão em saliva, apenas os grupos U200 e ZnP tiveram aumento significativo nos valores de Ra e não houve diferenças significativas entre os grupos quanto à %VHN. A análise em MEV mostrou que os grupos Ketac e ZNP apresentaram superfícies rugosas e porosas, e o grupo U200 apresentou maior degradação da matriz comparado ao grupo ARC. Conclusão: O desafio erosivo com bebida a base de cola afetou as propriedades de superfície de todos os cimentos.

Palavras-chave

Erosão dentária, cimentos de resina, cimentos de ionômero de vidro, testes de dureza.

References

1. Jaeggi T, Lussi A. Prevalence, incidence and distribution of erosion. Monogr Oral Sci. 2014;25:55-73. http://dx.doi.org/10.1159/000360973. PMid:24993258.

2. Figueiredo VMG, Santos RL, Batista AUD. Avaliação de hábitos de higiene bucal, hábitos alimentares e pH salivar em pacientes com ausência e presença de lesões cervicais não cariosas. Rev Odontol UNESP. 2013 Dec;42(6):414-9. http://dx.doi.org/10.1590/S1807-25772013000600004.

3. Gemalmaz D, Pameijer CH, Latta M, Kuybulu F, Alcan T. In vivo disintegration of four different luting agents. Int J Dent. 2012;2012:831508. http://dx.doi.org/10.1155/2012/831508. PMid:22007219.

4. Sari ME, Erturk AG, Koyuturk AE, Bekdemir Y. Evaluation of the effect of food and beverages on enamel and restorative materials by SEM and Fourier transform infrared spectroscopy. Microsc Res Tech. 2014 Jan;77(1):79-90. http://dx.doi.org/10.1002/jemt.22315. PMid:24218060.

5. Kuybulu FI, Gemalmaz D, Pameijer CH, Yarat A, Alcan T. Erosion of luting cements exposed to acidic buffer solutions. Int J Prosthodont. 2007 Sep-Oct;20(5):494-5. PMid:17944338.

6. Eisenburger M, Addy M, Rossbach A. Acidic solubility of luting cements. J Dent. 2003 Feb;31(2):137-42. http://dx.doi.org/10.1016/S0300-5712(03)00002-2. PMid:12654553.

7. McKenzie MA, Linden RW, Nicholson JW. The physical properties of conventional and resin-modified glass-ionomer dental cements stored in saliva, proprietary acid beverages, saline and water. Biomaterials. 2003 Oct;24(22):4063-9. http://dx.doi.org/10.1016/S0142-9612(03)00282-5. PMid:12834602.

8. Yoshida K, Tanagawa M, Atsuta M. In-vitro solubility of three types of resin and conventional luting cements. J Oral Rehabil. 1998 Apr;25(4):285-91. PMid:9610856.

9. Guarda GB, Gonçalves LS, Correr AB, Moraes RR, Sinhoreti MA, Correr-Sobrinho L. Luting glass ceramic restorations using a self-adhesive resin cement under different dentin conditions. J Appl Oral Sci. 2010 May-Jun;18(3):244-8. http://dx.doi.org/10.1590/S1678-77572010000300008. PMid:20857001.

10. Rodrigues RF, Ramos CM, Francisconi PA, Borges AF. The shear bond strength of self-adhesive resin cements to dentin and enamel: an in vitro study. J Prosthet Dent. 2015 Mar;113(3):220-7. http://dx.doi.org/10.1016/j.prosdent.2014.08.008. PMid:25444282.

11. Fukazawa M, Matsuya S, Yamane M. The mechanism for erosion of glass-ionomer cements in organic-acid buffer solutions. J Dent Res. 1990 May;69(5):1175-9. http://dx.doi.org/10.1177/00220345900690051001. PMid:2335651.

12. Knobloch LA, Kerby RE, McMillen K, Clelland N. Solubility and sorption of resin-based luting cements. Oper Dent. 2000 Sep-Oct;25(5):434-40. PMid:11203853.

13. Levy FM, Magalhães AC, Gomes MF, Comar LP, Rios D, Buzalaf MA. The erosion and abrasion-inhibiting effect of TiF(4) and NaF varnishes and solutions on enamel in vitro. Int J Paediatr Dent. 2012 Jan;22(1):11-6. http://dx.doi.org/10.1111/j.1365-263X.2011.01151.x. PMid:21689178.

14. Francisconi LF, Honorio HM, Rios D, Magalhaes AC, Machado MA, Buzalaf MA. Effect of erosive pH cycling on different restorative materials and on enamel restored with these materials. Oper Dent. 2008 Mar-Apr;33(2):203-8. http://dx.doi.org/10.2341/07-77. PMid:18435196.

15. Medeiros IC, Brasil VL, Carlo HL, Santos RL, De Lima BA, De Carvalho FG. In vitro effect of calcium nanophosphate and high-concentrated fluoride agents on enamel erosion: an AFM study. Int J Paediatr Dent. 2014 May;24(3):168-74. http://dx.doi.org/10.1111/ipd.12046. PMid:23782170.

16. Magalhães AC, Levy FM, Rios D, Buzalaf MA. Effect of a single application of TiF(4) and NaF varnishes and solutions on dentin erosion in vitro. J Dent. 2010 Feb;38(2):153-7. http://dx.doi.org/10.1016/j.jdent.2009.09.015. PMid:19808078.

17. Attar N, Tam LE, McComb D. Mechanical and physical properties of contemporary dental luting agents. J Prosthet Dent. 2003 Feb;89(2):127-34. http://dx.doi.org/10.1067/mpr.2003.20. PMid:12616231.

18. Amaechi BT, Higham SM, Edgar WM. Techniques for the production of dental eroded lesions in vitro. J Oral Rehabil. 1999 Feb;26(2):97-102. http://dx.doi.org/10.1046/j.1365-2842.1999.00349.x. PMid:10080305.

19. Honório HM, Rios D, Francisconi LF, Magalhães AC, Machado MA, Buzalaf MA. Effect of prolonged erosive pH cycling on different restorative materials. J Oral Rehabil. 2008 Dec;35(12):947-53. http://dx.doi.org/10.1111/j.1365-2842.2008.01856.x. PMid:18976266.

20. Turssi CP, Hara AT, Domiciano SJ, Serra MC. Study on the potential inhibition of root dentine wear adjacent to fluoride-containing restorations. J Mater Sci Mater Med. 2008 Jan;19(1):47-51. http://dx.doi.org/10.1007/s10856-007-3140-4. PMid:17577637.

21. Lussi A, Jaeggi T, Zero D. The role of diet in the etiology of dental erosion. Caries Res. 2004;38(Suppl 1):34-44. http://dx.doi.org/10.1159/000074360. PMid:14685022.

22. Gladys S, Van Meerbeek B, Braem M, Lambrechts P, Vanherle G. Comparative physico-mechanical characterization of new hybrid restorative materials with conventional glass-ionomer and resin composite restorative materials. J Dent Res. 1997 Apr;76(4):883-94. http://dx.doi.org/10.1177/00220345970760041001. PMid:9126185.

588019e27f8c9d0a098b53a4 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections