Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/doi/10.1590/1807-2577.01919
Revista de Odontologia da UNESP
Original Article

Influência da topografia de superfície nanométrica na estabilidade primária de mini-implantes dentários

Influence of the nanometric surface topography on the primary stability of dental mini-implants

Juliana Dias Corpa TARDELLI; Mariana Lima da Costa VALENTE; Andréa Cândido DOS REIS

Downloads: 0
Views: 92

Resumo

Resumo: Introdução: A modificação físico-química da superfície de mini-implantes utilizados no suporte de overdentures pode influenciar o desempenho mecânico dos mesmos.

Objetivo: Avaliar a influência de um tratamento de superfície do tipo nanométrico no desempenho mecânico de novos designs de mini-implantes.

Material e método: Foram utilizados 40 mini-implantes (Ti-6Al-4V), com Ø 2 mm × 10 mm de comprimento e dois designs diferentes, rosqueado e helicoidal, divididos em quatro grupos (n=10), de acordo com o modelo e a presença ou a ausência de tratamento superficial. O desempenho mecânico foi avaliado por meio de torque de inserção e ensaio de arrancamento em cilindros ósseos suínos. Análise de variância ANOVA e teste de Tukey, com significância de 5%, foram utilizados para análise estatística dos dados.

Resultado: Foi observada diferença estatisticamente significante entre os grupos com e sem tratamento para torque de inserção (p<0,001), e ensaio de arrancamento (p=0,006), sendo a maior média para o grupo com tratamento, independentemente do design. Na comparação entre os designs, o rosqueado apresentou média significativamente maior (p<0,001) que o helicoidal. Conclusão: O tratamento de superfície nanométrico viabilizou melhor desempenho mecânico dos mini-implantes avaliados. Com relação aos novos designs testados, o rosqueado apresentou resultados superiores ao helicoidal.

Palavras-chave

Implantes dentários, design, torque, alteração de superfície

Abstract

Abstract: Introduction: The physical-chemical modification of the surface of mini-implants used in the support of overdentures can influence the mechanical performance and survival of the same.

Objective: To evaluate the influence of a nanometric surface treatment on the mechanical performance of new mini-implant designs.

Material and method: 40 mini-implants (Ti-6Al-4V) with Ø 2 mm x 10 mm in length and two different designs, threaded and helical, were divided into four groups (n = 10) according to model, presence or absence of surface treatment. The mechanical performance was evaluated by means of insertion torque and pullout test in swine bony cylinders. Analysis of variance ANOVA and Tukey test, with significance of 5% were used for statistical analysis of the data.

Result: A statistically significant difference was observed between the groups with and without treatment for insertion torque (p <0.001) and pullout test (p = 0.006), being the highest mean for the treatment group, regardless of the design. In the comparison between the designs, the thread presented a significantly higher average (p <0.001) than the helicoid.

Conclusion: The nanometric surface treatment enabled better mechanical performance of the mini-implants evaluated. With respect to the new designs tested, the thread presented superior results to the helicoidal one.
 

Keywords

Dental implants, design, torque, surface alteration

References

Toyoshima T, Wagner W, Klein MO, Stender E, Wieland M, Al-Nawas B. Primary stability of a hybrid self-tapping implant compared to a cylindrical non-self-tapping implant with respect to drilling protocols in an ex vivo model. Clin Implant Dent Relat Res. 2011 Mar;13(1):71-8. http://dx.doi.org/10.1111/j.1708-8208.2009.00185.x. PMid:19681929.

Sciasci P, Casalle N, Vaz LG. Evaluation of primary stability in modified implants: Analysis by resonance frequency and insertion torque. Clin Implant Dent Relat Res. 2018 Jun;20(3):274-9. http://dx.doi.org/10.1111/cid.12574. PMid:29380490.

Walker LR, Morris GA, Novotny PJ. Implant insertional torque values predict outcomes. J Oral Maxillofac Surg. 2011 May;69(5):1344-9. http://dx.doi.org/10.1016/j.joms.2010.11.008. PMid:21398013.

Iezzi G, Scarano A, Di Stefano DA, Arosio P, Doi K, Ricci L, et al. Correlation between the bone density recorded by a computerized implant motor and by a histomorphometric analysis: a preliminary in vitro study on bovine ribs. Clin Implant Dent Relat Res. 2015 Jan;17(Suppl 1):e35-44. http://dx.doi.org/10.1111/cid.12121. PMid:23879771.

Valente ML, de Castro DT, Shimano AC, Lepri CP, dos Reis AC. Analyzing the Influence of a New Dental Implant Design on Primary Stability. Clin Implant Dent Relat Res. 2016 Feb;18(1):168-73. http://dx.doi.org/10.1111/cid.12324. PMid:25801693.

Oue H, Doi K, Oki Y, Makihara Y, Kubo T, Perrotti V, et al. Influence of implant surface topography on primary stability in a standardized osteoporosis rabbit model study. J Funct Biomater. 2015 Mar;6(1):143-52. http://dx.doi.org/10.3390/jfb6010143. PMid:25794350.

Elias CN, Rocha FA, Nascimento AL, Coelho PG. Influence of implant shape, surface morphology, surgical technique and bone quality on the primary stability of dental implants. J Mech Behav Biomed Mater. 2012 Dec;16:169-80. http://dx.doi.org/10.1016/j.jmbbm.2012.10.010. PMid:23182386.

Mazzo CR, Reis AC, Shimano AC, Valente ML. In vitro analysis of the influence of surface treatment of dental implants on primary stability. Braz Oral Res. 2012 Jul-Aug;26(4):313-7. http://dx.doi.org/10.1590/S1806-83242012005000006. PMid:22596223.

Fröjd V, Wennerberg A, Franke Stenport V. Importance of Ca2+ modifications for osseointegration of smooth and moderately rough anodized titanium implants – a removal torque and histological evaluation in rabbit. Clin Implant Dent Relat Res. 2012 Oct;14(5):737-45. http://dx.doi.org/10.1111/j.1708-8208.2010.00315.x. PMid:20977616.

Carmo Filho LCD, Marcello-Machado RM, Castilhos ED, Del Bel Cury AA, Faot F. Can implant surfaces affect implant stability during osseointegration? A randomized clinical trial. Braz Oral Res. 2018 Oct;32(0):e110. http://dx.doi.org/10.1590/1807-3107bor-2018.vol32.0110. PMid:30379212.

Svanborg LM, Andersson M, Wennerberg A. Surface characterization of commercial oral implants on the nanometer level. J Biomed Mater Res B Appl Biomater. 2010 Feb;92(2):462-9. PMid:19957360.

Claros CAE, Oliveira DP, Campanelli LC, Pereira da Silva PSC, Bolfarini C. Fatigue behavior of Ti-6Al-4V alloy in saline solution with the surface modified at a micro- and nanoscale by chemical treatment. Mater Sci Eng C Mater Biol Appl. 2016 Oct;67:425-32. http://dx.doi.org/10.1016/j.msec.2016.04.099. PMid:27287139.

Bjursten LM, Rasmusson L, Oh S, Smith GC, Brammer KS, Jin S. Titanium dioxide nanotubes enhance bone bonding in vivo. J Biomed Mater Res A. 2010 Mar;92(3):1218-24. PMid:19343780.

Jimbo R, Sotres J, Johansson C, Breding K, Currie F, Wennerberg A. The biological response to three different nanostructures applied on smooth implant surfaces. Clin Oral Implants Res. 2012 Jun;23(6):706-12. http://dx.doi.org/10.1111/j.1600-0501.2011.02182.x. PMid:21488968.

Rosa MB, Albrektsson T, Francischone CE, Schwartz Filho HO, Wennerberg A. The influence of surface treatment on the implant roughness pattern. J Appl Oral Sci. 2012 Sep-Oct;20(5):550-5. http://dx.doi.org/10.1590/S1678-77572012000500010. PMid:23138742.

Oliveira DP, Prokofiev E, Sanches LFR, Polyakova V, Valiev RZ, Botta WJ, et al. Surface chemical treatment of ultrafine-grained Ti–6Al-7Nb alloy processed by severe plastic deformation. J Alloys Compd. 2015 Sep;643(Suppl 1):S241-5. http://dx.doi.org/10.1016/j.jallcom.2014.11.115.

Pithon MM, Nojima MG, Nojima LI. Primary stability of orthodontic mini-implants inserted into maxilla and mandible of swine. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012 Jun;113(6):748-54. http://dx.doi.org/10.1016/j.tripleo.2011.06.021. PMid:22677021.

Rittel D, Dorogoy A, Shemtov-Yona K. Modeling the effect of osseointegration on dental implant pullout and torque removal tests. Clin Implant Dent Relat Res. 2018 Oct;20(5):683-91. http://dx.doi.org/10.1111/cid.12645. PMid:30051951.

Valente MLDC, Castro DT, Shimano AC, Reis ACD. Influence of an alternative implant design and surgical protocol on primary stability. Braz Dent J. 2019 Jan-Feb;30(1):47-51. http://dx.doi.org/10.1590/0103-6440201902324. PMid:30864647.

Coelho PG, Jimbo R. Osseointegration of metallic devices: current trends based on implant hardware design. Arch Biochem Biophys. 2014 Nov;561:99-108. http://dx.doi.org/10.1016/j.abb.2014.06.033. PMid:25010447.

Elias CN, Meirelles L. Improving osseointegration of dental implants. Expert Rev Med Devices. 2010 Mar;7(2):241-56. http://dx.doi.org/10.1586/erd.09.74. PMid:20214429.

Wennerberg A, Albrektsson T, Andersson B. An animal study of cp titanium screws with different surface topographies. J Mater Sci Mater Med. 1995 May;6(5):302-9. http://dx.doi.org/10.1007/BF00120275.

Gansukh O, Jeong JW, Kim JW, Lee JH, Kim TW. Mechanical and histological effects of resorbable blasting media surface treatment on the initial stability of orthodontic mini-implants. BioMed Res Int. 2016;2016:7520959. http://dx.doi.org/10.1155/2016/7520959. PMid:26942200.

Maiorana C, Farronato D, Pieroni S, Cicciu M, Andreoni D, Santoro F. A four-year survival rate multicenter prospective clinical study on 377 implants: correlations between implant insertion torque, diameter, and bone quality. J Oral Implantol. 2015 Jun;41(3):e60-5. http://dx.doi.org/10.1563/AAID-JOI-D-13-00206. PMid:24517193.

Toth A, Hasan I, Bourauel C, Mundt T, Biffar R, Heinemann F. The influence of implant body and thread design of mini dental implants on the loading of surrounding bone: a finite element analysis. Biomed Tech (Berl). 2017 Aug;62(4):393-405. http://dx.doi.org/10.1515/bmt-2016-0002. PMid:28358711.

Griggs JA. Dental implants. Dent Clin North Am. 2017 Oct;61(4):857-71. http://dx.doi.org/10.1016/j.cden.2017.06.007. PMid:28886772.

Ma P, Xiong W, Tan B, Geng W, Liu J, Li W, et al. Influence of thread pitch, helix angle, and compactness on micromotion of immediately loaded implants in three types of bone quality: a three-dimensional finite element analysis. BioMed Res Int. 2014;2014:983103. http://dx.doi.org/10.1155/2014/983103. PMid:25110716.

Menezes HHM, Naves MM, Costa HL, Barbosa TP, Ferreira JA, Magalhães D, et al. Effect of surgical installation of dental implants on surface topography and its influence on osteoblast proliferation. Int J Dent. 2018 Oct;2018:4089274. http://dx.doi.org/10.1155/2018/4089274. PMid:30416524.

Falco A, Berardini M, Trisi P. Correlation between implant geometry, implant surface, insertion torque, and primary stability: in vitro biomechanical analysis. Int J Oral Maxillofac Implants. 2018 Jul/Aug;33(4):824-30. http://dx.doi.org/10.11607/jomi.6285. PMid:30024998.

Geckili O, Bilhan H, Geckili E, Cilingir A, Mumcu E, Bural C. Evaluation of possible prognostic factors for the success, survival, and failure of dental implants. Implant Dent. 2014 Feb;23(1):44-50. http://dx.doi.org/10.1097/ID.0b013e3182a5d430. PMid:24113554.

Yamaguchi Y, Shiota M, Munakata M, Kasugai S, Ozeki M. Effect of implant design on primary stability using torque-time curves in artificial bone. Int J Implant Dent. 2015 Dec;1(1):21. http://dx.doi.org/10.1186/s40729-015-0024-0. PMid:27747643.
 

5d7fc8c20e8825ce56bbebff rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections