Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/doi/10.1590/1807-2577.01724
Revista de Odontologia da UNESP
Original Article

Performance of conventional acrylic resin vs. 3D printed resin in surface roughness, hardness, and mechanical resistance

Desempenho de resina acrílica convencional vs. resina impressa em 3D em rugosidade superficial, dureza e resistência mecânica

Heloisa Émilly da Silva SANTOS; Milena Danubia Lima NASCIMENTO; Klennye Lorranny de Sousa PENAFORT; Antonio José TÔRRES NETO; Larissa Araújo Lopes BARRETO; Manassés Tercio Vieira GRANGEIRO; Rebeca Tibau Aguiar DIAS; Viviane Maria Gonçalves de FIGUEIREDO

Downloads: 0
Views: 61

Abstract

Introduction: Provisional prostheses protect dental preparations during treatment, with conventional and digital methods available for fabrication. While 3D-printed resins show promise for durability and mechanical properties, further research is needed to clarify their advantages over conventional acrylic resins, specifically in terms of surface roughness, hardness, and resistance in provisional crowns.

Objective: To compare conventional acrylic resin and 3D printed resin for fabrication of provisional prostheses through an in vitro study on surface roughness, hardness, and mechanical resistance.

Material and method: Bars (25 x 12 x 2 mm) of heat-polymerized acrylic resin (RAT=05) and self-polymerized acrylic resin (RAA=05), as well as 3D printed resin (R3D=05), were fabricated for conducting tests on mean surface roughness (Ra), Vickers hardness, and three-point flexural strength. Subsequently, the specimens were evaluated after fracture. Surface characterization was also performed with significant specimens per experimental group (N=1) using a stereomicroscope, scanning electron microscope, and profilometer.

Result: Data on surface roughness, hardness, and mechanical resistance were subjected to one-way ANOVA (p < 0.05), followed by Tukey's test when a statistically significant difference was identified. Findings from surface analysis and fractography were presented qualitatively. The R3D group exhibited a surface with successive layers distinct from other resins. There was no statistical difference between groups for surface roughness (p=0.220). However, statistical differences were identified among experimental groups for hardness and mechanical resistance (p=0.000). Notably, the R3D group showed higher mean hardness (19.50 VD) and lower mean mechanical resistance (54.08 MPa). Specimens from the R3D group showed two or more fragments after fracture, whereas other groups exhibited only two fragments. Similarity was observed regarding surface roughness between conventional acrylic resins and 3D printed resin.

Conclusion: The 3D printed resin demonstrated both superior and inferior performance compared to conventional acrylic resins in terms of hardness and mechanical strength.

Keywords

Dental prosthesis; 3D printing; polymers; flexural strength

Resumo

Introdução: Próteses provisórias protegem os preparos dentários durante o tratamento, com métodos convencionais e digitais disponíveis para sua fabricação. Embora as resinas impressas em 3D apresentem potencial para durabilidade e propriedades mecânicas, mais pesquisas são necessárias para esclarecer suas vantagens em relação às resinas acrílicas convencionais, especificamente quanto à rugosidade de superfície, dureza e resistência em coroas provisórias.

Objetivo: Comparar a resina acrílica convencional e a resina impressa 3D para confecção de próteses provisórias, através de um estudo in vitro sobre rugosidade superficial, dureza e resistência mecânica.

Material e método: Barras (25 x 12 x 2 mm) em resina acrílica termopolimerizável (RAT=05) e autopolimerizável (RAA=05), além de resina Impressa 3D (R3D=05) foram confeccionadas para a realização dos testes de rugosidade superficial média (Ra), Dureza Vickers e resistência à flexão três pontos, em seguida os espécimes foram avaliados após a fratura. Também foi realizada a caracterização superficial com espécimes significativos por grupo experimental (N=1), por meio de estereomicroscópio, microscópio eletrônico de varredura e perfilômetro.

Resultado: Os dados de rugosidade superficial, dureza e resistência mecânica foram submetidos ao teste estatístico ANOVA 1 Fator (p < 0,05), seguido pelo Teste de Tukey quando tenha sido identificada diferença estatisticamente significativa. Os achados da análise superficial e da fractografia foram apresentados de forma qualitativa. O grupo R3D apresentou uma superfície com camadas sucessivas e distinta das demais resinas. Não houve diferença estatística entre grupos para a rugosidade superficial (p=0,220). Para dureza e resistência mecânica (p=0,000) foi identificada diferença estatística entre grupos experimentais. Destacando o grupo R3D com maior média de dureza (19,50 VD) e menor média de resistência mecânica (54,08 Mpa). Os espécimes do grupo R3D apresentam dois ou mais fragmentos após a fratura, já nos demais grupos havia apenas dois fragmentos. Identificou-se semelhança quanto à rugosidade superficial entre as resinas acrílicas convencionais e a resina impressa 3D.

Conclusão: A resina impressa 3D apresentou desempenho superior e inferior, quando comparada com as resinas acrílicas convencionais, em relação a dureza e a resistência mecânica.

Palavras-chave

Prótese dentária; impressão 3D; polímeros; resistência à flexão

References

1 Alageel O, Alsadon O, Almansour H, Alshehri A, Alhabbad F, Alsarani M. Assessment of effect of accelerated aging on interim fixed dental materials using digital technologies. J Adv Prosthodont. 2022 Dec;14(6):360-8. http://doi.org/10.4047/jap.2022.14.6.360. PMid:36685789.

2 Ellakany P, Fouda SM, Mahrous AA, AlGhamdi MA, Aly NM. Influence of CAD/CAM milling and 3D-printing fabrication methods on the mechanical properties of 3-unit interim fixed dental prosthesis after thermo-mechanical aging process. Polymers (Basel). 2022 Sep;14(19):4103. http://doi.org/10.3390/polym14194103. PMid:36236050.

3 Jain S, Sayed ME, Shetty M, Alqahtani SM, Al Wadei MHD, Gupta SG, et al. Physical and mechanical properties of 3D-printed provisional crowns and fixed dental prosthesis resins compared to CAD/CAM milled and conventional provisional resins: a systematic review and meta-analysis. Polymers (Basel). 2022 Jun;14(13):2691. http://doi.org/10.3390/polym14132691. PMid:35808735.

4 Myagmar G, Lee JH, Ahn JS, Yeo IL, Yoon HI, Han JS. Wear of 3D printed and CAD/CAM milled interim resin materials after chewing simulation. J Adv Prosthodont. 2021 Jun;13(3):144-51.http://doi.org/10.4047/jap.2021.13.3.144. PMid:34234924.

5 Pantea M, Ciocoiu RC, Greabu M, Ripszky Totan A, Imre M, Țâncu AMC, et al. Compressive and flexural strength of 3D-printed and conventional resins designated for interim fixed dental prostheses: an in vitro comparison. Materials (Basel). 2022 Apr;15(9):3075. http://doi.org/10.3390/ma15093075. PMid:35591410.

6 Simoneti DM, Pereira-Cenci T, Dos Santos MBF. Comparison of material properties and biofilm formation in interim single crowns obtained by 3D printing and conventional methods. J Prosthet Dent. 2022 Jan;127(1):168-72. http://doi.org/10.1016/j.prosdent.2020.06.026. PMid:33168174.

7 Al-Qahtani AS, Tulbah HI, Binhasan M, Abbasi MS, Ahmed N, Shabib S, et al. Surface properties of polymer resins fabricated with subtractive and additive manufacturing techniques. Polymers (Basel). 2021 Nov;13(23):4077. http://doi.org/10.3390/polym13234077. PMid:34883581.

8 Alshamrani AA, Raju R, Ellakwa A. Effect of printing layer thickness and postprinting conditions on the flexural strength and hardness of a 3D-printed resin. BioMed Res Int. 2022 Feb;2022:8353137. http://doi.org/10.1155/2022/8353137. PMid:35237691.

9 Crenn MJ, Rohman G, Fromentin O, Benoit A. Polylactic acid as a biocompatible polymer for three-dimensional printing of interim prosthesis: mechanical characterization. Dent Mater J. 2022 Feb;41(1):110-6. http://doi.org/10.4012/dmj.2021-151. PMid:34866117.

10 Al-Dulaijan YA, Alsulaimi L, Alotaibi R, Alboainain A, Alalawi H, Alshehri S, et al. Comparative evaluation of surface roughness and hardness of 3D printed resins. Materials (Basel). 2022 Oct;15(19):6822. http://doi.org/10.3390/ma15196822. PMid:36234163.

11 Park SM, Park JM, Kim SK, Heo SJ, Koak JY. Flexural strength of 3D-printing resin materials for provisional fixed dental prostheses. Materials (Basel). 2020 Sep;13(18):3970. http://doi.org/10.3390/ma13183970. PMid:32911702.
 


Submitted date:
07/12/2024

Accepted date:
09/26/2024

6751f0e4a953955f12619bc3 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections