Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/doi/10.1590/1807-2577.00623
Revista de Odontologia da UNESP
Original Article

Flexural resistance of 3D printing resin compared to conventional acrylic resins employed to build occlusal bite splints

Resistência flexural de uma resina para impressão 3D comparada a resinas acrílicas convencionais empregadas para confecção de placas estabilizadoras de mordida

Otavio Marino dos SANTOS NETO; Gabriele Maurício de CERQUEIRA; João Paulo do Vale SOUZA; Rossana Pereira de ALMEIDA; José Vitor Quinelli MAZARO; Adriana Cristina ZAVANELLI

Downloads: 1
Views: 850

Abstract

Abstract: Introduction: with the technological advance in dentistry, light-polymerized three-dimensional (3D) printing resins had become an alternative for the manufacture of occlusal splint splints.

Objective: the present study aimed to analyze the flexural strength of a resin for 3D printing compared to conventional acrylic resins (chemically activated and thermally activated), under the influence of thermocycling.

Material and method: 60 specimens were made, which were distributed in six experimental groups (n = 10), according to the resin employed (chemically activated acrylic resin, thermally activated acrylic resin and 3D printing resin) and the treatment received (control and thermocycling). The specimens were submitted to flexural strength by the three-point flexural test.

Result: data analysis showed that the material factor (<0.0001) and the thermocycling factor (p = 0.0096) influenced flexural strength, however, the interaction between the two factors did not (p = 0.9728).

Conclusion: it was concluded that 3D printing resins presented the lowest flexural resistance to acrylic resins, especially when submitted to thermocycling.

Keywords

3D printing resins, acrylic resins, occlusal bite splint

Resumo

Resumo: Introdução: com o avanço tecnológico dentro da odontologia, as resinas fotopolimerizáveis para impressão tridimensional (3D) se tornaram uma alternativa para a fabricação de dispositivos interoclusais.

Objetivo: o presente trabalho teve como objetivo analisar a resistência flexural de uma resina para impressão tridimensional comparada com resinas acrílicas convencionais (quimicamente ativada e termicamente ativada), sob a influência da termociclagem.

Material e método: foram confeccionados 60 corpos de prova, que foram distribuídos aleatoriamente em seis grupos experimentais (n=10), de acordo com a resina utilizada (resina acrílica ativada quimicamente, resina acrílica ativada termicamente e resina para impressão 3D) e com o tratamento recebido (controle e termociclagem). Os corpos de prova foram submetidos ao ensaio de flexão de três pontos para determinação da resistência flexural.

Resultado: a análise dos dados demonstrou que o fator material (<0.0001) e o fator termociclagem (p=0.0096) influenciaram a resistência flexural, entretanto, a interação entre os dois fatores não (p=0.9728).

Conclusão: deste modo podemos concluir que a resina para impressão 3D apresentou desempenho inferior às resinas acrílicas, especialmente quando submetida a termociclagem.
 

Palavras-chave

Resinas para impressão tridimensional, resinas acrílicas, placas estabilizadoras

References

1 Abduo J, Lyons K, Bennamoun M. Trends in computer-aided manufacturing in prosthodontics: a review of the available streams. Int J Dent. 2014;2014:783948. http://dx.doi.org/10.1155/2014/783948. PMid:24817888.

2 Murugesan K, Anandapandian PA, Sharma SK, Kumar MV. Comparative evaluation of dimension and surface detail accuracy of models produced by three different rapid prototype techniques. J Indian Prosthodont Soc. 2012 Mar;12(1):16-20. http://dx.doi.org/10.1007/s13191-011-0103-8. PMid:23449946.

3 Hazeveld A, Slater JJH, Ren Y. Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques. Am J Orthod Dentofacial Orthop. 2014 Jan;145(1):108-15. http://dx.doi.org/10.1016/j.ajodo.2013.05.011. PMid:24373661.

4 Fernandes N, van den Heever J, Hoogendijk C, Botha S, Booysen G, Els J. Reconstruction of an extensive midfacial defect using additive manufacturing techniques. J Prosthodont. 2016 Oct;25(7):589-94. http://dx.doi.org/10.1111/jopr.12487. PMid:27123959.

5 Cheng A, Humayun A, Cohen DJ, Boyan BD, Schwartz Z. Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner. Biofabrication. 2014 Oct;6(4):045007. http://dx.doi.org/10.1088/1758-5082/6/4/045007. PMid:25287305.

6 Shujaat S, Costa O Sr, Shaheen E, Politis C, Jacobs R. Visual and haptic perceptibility of 3D printed skeletal models in orthognathic surgery. J Dent. 2021 Jun;109:103660. http://dx.doi.org/10.1016/j.jdent.2021.103660. PMid:33848559.

7 Al Mortadi N, Jones Q, Eggbeer D, Lewis J, Williams RJ. Fabrication of a resin appliance with alloy components using digital technology without an analog impression. Am J Orthod Dentofacial Orthop. 2015 Nov;148(5):862-7. http://dx.doi.org/10.1016/j.ajodo.2015.06.014. PMid:26522047.

8 Nakata T, Shimpo H, Ohkubo C. Clasp fabrication using one-process molding by repeated laser sintering and high-speed milling. J Prosthodont Res. 2017 Jul;61(3):276-82. http://dx.doi.org/10.1016/j.jpor.2016.10.002. PMid:27825561.

9 Reymus M, Fabritius R, Keßler A, Hickel R, Edelhoff D, Stawarczyk B. Fracture load of 3D-printed fixed dental prostheses compared with milled and conventionally fabricated ones: the impact of resin material, build direction, post-curing, and artificial aging-an in vitro study. Clin Oral Investig. 2020 Feb;24(2):701-10. http://dx.doi.org/10.1007/s00784-019-02952-7. PMid:31127429.

10 Berli C, Thieringer FM, Sharma N, Müller JA, Dedem P, Fischer J, et al. Comparing the mechanical properties of pressed, milled, and 3D-printed resins for occlusal devices. J Prosthet Dent. 2020 Dec;124(6):780-6. http://dx.doi.org/10.1016/j.prosdent.2019.10.024. PMid:31955837.

11 Reichardt G, Miyakawa Y, Otsuka T, Sato S. The mandibular response to occlusal relief using a flat guidance splint. Int J Stomatol Occlusion Med. 2013;6(4):134-9. http://dx.doi.org/10.1007/s12548-013-0093-8. PMid:24273617.

12 Kurt H, Erdelt KJ, Cilingir A, Mumcu E, Sülün T, Tuncer N, et al. Two-body wear of occlusal splint materials. J Oral Rehabil. 2012 Aug;39(8):584-90. http://dx.doi.org/10.1111/j.1365-2842.2012.02301.x. PMid:22486490.

13 Reyes-Sevilla M, Kuijs RH, Werner A, Kleverlaan CJ, Lobbezoo F. Comparison of wear between occlusal splint materials and resin composite materials. J Oral Rehabil. 2018 Jul;45(7):539-44. http://dx.doi.org/10.1111/joor.12636. PMid:29663496.

14 Donovan TE, Hurst RG, Campagni WV. Physical properties of acrylic resin polymerized by four different techniques. J Prosthet Dent. 1985 Oct;54(4):522-4. http://dx.doi.org/10.1016/0022-3913(85)90425-1. PMid:3862809.

15 Mazzeto MO, Hotta TH, Mazzetto RG. Analysis of TMJ vibration sounds before and after use of two types of occlusal splints. Braz Dent J. 2009;20(4):325-30. http://dx.doi.org/10.1590/S0103-64402009000400011. PMid:20069257.

16 Benli M, Gümüş BE, Kahraman Y, Gökçen-Rohlig B, Evlioğlu G, Huck O, et al. Surface roughness and wear behavior of occlusal splint materials made of contemporary and high-performance polymers. Odontology. 2020 Apr;108(2):240-50. http://dx.doi.org/10.1007/s10266-019-00463-1. PMid:31612354.

17 Wedekind L, Güth JF, Schweiger J, Kollmuss M, Reichl FX, Edelhoff D, et al. Elution behavior of a 3D-printed, milled and conventional resin-based occlusal splint material. Dent Mater. 2021 Apr;37(4):701-10. http://dx.doi.org/10.1016/j.dental.2021.01.024. PMid:33648744.

18 Astudillo-Rubio D, Delgado-Gaete A, Bellot-Arcís C, Montiel-Company JM, Pascual-Moscardó A, Almerich-Silla JM. Mechanical properties of provisional dental materials: a systematic review and meta-analysis. PLoS One. 2018 Feb;13(2):e0193162. http://dx.doi.org/10.1371/journal.pone.0193162. PMid:29489883.

19 Prpić V, Schauperl Z, Ćatić A, Dulčić N, Čimić S. Comparison of mechanical properties of 3D-Printed, CAD/CAM, and conventional denture base materials. J Prosthodont. 2020 Jul;29(6):524-8. http://dx.doi.org/10.1111/jopr.13175. PMid:32270904.

20 Lutz AM, Hampe R, Roos M, Lümkemann N, Eichberger M, Stawarczyk B. Fracture resistance and 2-body wear of 3-dimensional-printed occlusal devices. J Prosthet Dent. 2019 Jan;121(1):166-72. http://dx.doi.org/10.1016/j.prosdent.2018.04.007. PMid:30647000.

21 Väyrynen VO, Tanner J, Vallittu PK. The anisotropicity of the flexural properties of an occlusal device material processed by stereolithography. J Prosthet Dent. 2016 Nov;116(5):811-7. http://dx.doi.org/10.1016/j.prosdent.2016.03.018. PMid:27312654.

22 Hoy MB. 3D printing: making things at the library. Med Ref Serv Q. 2013;32(1):93-9. http://dx.doi.org/10.1080/02763869.2013.749139. PMid:23394423.

23 Grauer D. Quality in orthodontics: the role of customized appliances. J Esthet Restor Dent. 2021 Jan;33(1):253-8. http://dx.doi.org/10.1111/jerd.12702. PMid:33410248.

24 Fung L, Brisebois P. Implementing digital dentistry into your esthetic dental practice. Dent Clin North Am. 2020 Oct;64(4):645-57. http://dx.doi.org/10.1016/j.cden.2020.07.003. PMid:32888514.

25 Salmi M, Paloheimo KS, Tuomi J, Ingman T, Mäkitie A. A digital process for additive manufacturing of occlusal splints: a clinical pilot study. J R Soc Interface. 2013 Apr;10(84):20130203. http://dx.doi.org/10.1098/rsif.2013.0203. PMid:23614943.
 


Submitted date:
01/29/2023

Accepted date:
03/20/2023

647a3d0ca95395326c1bbf94 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections