Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/doi/10.1590/1807-2577.00615
Revista de Odontologia da UNESP
Original Article

Effect of dietary sugars on dual-species biofilms of Streptococcus mutans and Streptococcus sobrinus – a pilot study

Efeito dos açucares da dieta em biofilme dupla espécie de Streptococcus mutans e Streptococcus sobrinus – um estudo piloto

Oliveira, Rosa Virginia Dutra de; Albuquerque, Yasmin Etienne; Spolidorio, Denise Madalena Palomari; Koga-Ito, Cristiane Yumi; Giro, Elisa Maria Aparecida; Brighenti, Fernanda Lourenção

Downloads: 0
Views: 547

Abstract

Introduction: Frequent consumption of sugars and the presence of Streptococcus mutans and Streptococcus sobrinus are correlated with higher caries experience. Objective: The aim of this pilot study was to elucidate the effect of different fermentable carbohydrates on biomass formation and acidogenicity of S. mutans and S. sobrinus biofilms. Material and method: Single and dual-species biofilms of S. mutans ATCC 25175 and S. sobrinus ATCC 27607 were grown at the bottom of microtiter plates at equal concentrations for 24 h at 37 °C under micro-aerobic atmosphere. Carbohydrates were added at 2% concentration: maltose, sucrose, glucose and lactose. BHI Broth (0.2% glucose) was used as negative control. Acidogenicity was assessed by measuring the pH of spent culture medium after 24 h, immediately after refreshing the culture medium and for the next 1 h and 2 h. Crystal violet staining was used as an indicator of the total attached biofilm biomass after 24 h incubation. Data were analyzed by two-way ANOVA followed by Bonferroni post hoc test. Significance level was set at 5%. Result: All carbohydrates resulted in higher biomass formation in single- and dual-species biofilms when compared to the control group. Sucrose, lactose and maltose showed higher acidogenicity than the control group in both single- and dual-species biofilms after 24 h. Conclusion: These findings indicate that the type of biofilm (single- or dual-species) and the carbohydrate used may influence the amount of biomass formed and rate of pH reduction.

Keywords

Biofilm, biomass, Streptococcus mutans, Streptococcus sobrinus

Resumo

Introdução: O consumo frequente de açucares e a presença de Streptococcus mutans e Streptococcus sobrinus estão correlacionados com maior experiência de cárie. Objetivo: Elucidar o efeito de diferentes carboidratos fermentáveis na biomassa e acidogenicidade de biofilmes formados por S. mutans e S. sobrinus. Material e método: Biofilmes única e dupla- espécie de S. mutans ATCC 25175 e S. sobrinus ATCC 27607 em concentrações iguais cresceram no fundo de placas de microtitulação por 24 h a 37 °C em microaerofilia. Maltose, sacarose, glicose e lactose foram adicionados a 2%. BHI caldo (0.2% glicose) foi usado como controle negativo. Acidogenicidade foi avaliada por meio da medição do pH do meio de cultura após 24 h, imediatamente após troca de meio e nas próximas 1 h e 2 h. Coloração por cristal violeta foi usada como indicador do total de biomassa aderida, após 24 h de incubação. Os dados foram analisados por teste ANOVA two way e Teste de Bonferroni. O nível de significância foi de 5%. Resultado: Todos os carboidratos resultaram em maior formação de biomassa em ambos os tipos de biofilme (única ou dupla- espécie), quando comparado ao grupo controle. Sacarose, lactose e maltose mostraram maior acidogenicidade que o grupo controle após 24 h nos biofilmes única ou dupla-espécie, apenas após 24 h. Conclusão: Os achados indicam que o tipo de biofilme (única ou dupla- espécie) e o tipo de carboidrato usado podem influenciar tanto na quantidade de biomassa formada quanto na taxa de redução do pH.

Palavras-chave

Biofilme, biomassa, Streptococcus mutans, Streptococcus sobrinus

References

1. Seki M, Yamashita Y, Shibata Y, Torigoe H, Tsuda H, Maeno M. Effect of mixed mutans streptococci colonization on caries development. Oral Microbiol Immunol. 2006 Feb;21(1):47-52. http://dx.doi.org/10.1111/j.1399-302X.2005.00253.x. PMid:16390341.

2. Choi EJ, Lee SH, Kim YJ. Quantitative real-time polymerase chain reaction for Streptococcus mutans and Streptococcus sobrinus in dental plaque samples and its association with early childhood caries. Int J Paediatr Dent. 2009 Mar;19(2):141-7. http://dx.doi.org/10.1111/j.1365-263X.2008.00942.x. PMid:19250396.

3. Nurelhuda NM, Al-Haroni M, Trovik TA, Bakken V. Caries experience and quantification of Streptococcus mutans and Streptococcus sobrinus in saliva of Sudanese schoolchildren. Caries Res. 2010;44(4):402-7. http://dx.doi.org/10.1159/000316664. PMid:20714152.

4. Okada M, Kawamura M, Oda Y, Yasuda R, Kojima T, Kurihara H. Caries prevalence associated with Streptococcus mutans and Streptococcus sobrinus in Japanese schoolchildren. Int J Paediatr Dent. 2012 Sep;22(5):342-8. http://dx.doi.org/10.1111/j.1365-263X.2011.01203.x. PMid:22225789.

5. Okada M, Soda Y, Hayashi F, Doi T, Suzuki J, Miura K, et al. Longitudinal study of dental caries incidence associated with Streptococcus mutans and Streptococcus sobrinus in pre-school children. J Med Microbiol. 2005 Jul;54(Pt 7):661-5. http://dx.doi.org/10.1099/jmm.0.46069-0. PMid:15947431.

6. Nascimento MM, Lemos JA, Abranches J, Gonçalves RB, Burne RA. Adaptive acid tolerance response of Streptococcus sobrinus. J Bacteriol. 2004 Oct;186(19):6383-90. http://dx.doi.org/10.1128/JB.186.19.6383-6390.2004. PMid:15375118.

7. Belli WA, Marquis RE. Adaptation of Streptococcus mutans and Enterococcus hirae to acid stress in continuous culture. Appl Environ Microbiol. 1991 Apr;57(4):1134-8. PMid:1829347.

8. de Soet JJ, Toors FA, de Graaff J. Acidogenesis by oral streptococci at different pH values. Caries Res. 1989;23(1):14-7. http://dx.doi.org/10.1159/000261148. PMid:2920379.

9. Beighton D. The complex oral microflora of high-risk individuals and groups and its role in the caries process. Community Dent Oral Epidemiol. 2005 Aug;33(4):248-55. http://dx.doi.org/10.1111/j.1600-0528.2005.00232.x. PMid:16008631.

10. Grindefjord M, Dahllof G, Wikner S, Hojer B, Modeer T. Prevalence of mutans streptococci in one-year-old children. Oral Microbiol Immunol. 1991 Oct;6(5):280-3. http://dx.doi.org/10.1111/j.1399-302X.1991.tb00492.x. PMid:1820564.

11. Campbell RG, Zinner DD. Effect of certain dietary sugars on hamster caries. J Nutr. 1970 Jan;100(1):11-20. PMid:4904500.

12. Cury JA, Marques AS, Tabchoury CPM, Del Bel Cury AA. Composition of dental plaque formed in the presence of sucrose and after its interruption. Braz Dent J. 2003;14(3):147-52. http://dx.doi.org/10.1590/S0103-64402003000300001. PMid:15057387.

13. Leme AF, Koo H, Bellato CM, Bedi G, Cury JA. The role of sucrose in cariogenic dental biofilm formation - new insight. J Dent Res. 2006 Oct;85(10):878-87. http://dx.doi.org/10.1177/154405910608501002. PMid:16998125.

14. Azevedo MS, Van de Sande FH, Romano AR, Cenci MS. Microcosm biofilms originating from children with different caries experience have similar cariogenicity under successive sucrose challenges. Caries Res. 2011;45(6):510-7. http://dx.doi.org/10.1159/000331210. PMid:21967836.

15. Ma R, Sun M, Wang S, Kang Q, Huang L, Li T, et al. Effect of high-fructose corn syrup on the acidogenicity, adherence and biofilm formation of Streptococcus mutans. Aust Dent J. 2013 Jun;58(2):213-8. http://dx.doi.org/10.1111/adj.12074. PMid:23713642.

16. Homer KA, Patel R, Beighton D. Effects of N-acetylglucosamine on carbohydrate fermentation by Streptococcus mutans NCTC 10449 and Streptococcus sobrinus SL-1. Infect Immun. 1993 Jan;61(1):295-302. PMid:8418050.

17. Kilic AO, Honeyman AL, Tao L. Overlapping substrate specificity for sucrose and maltose of two binding protein-dependent sugar uptake systems in Streptococcus mutans. FEMS Microbiol Lett. 2007 Jan;266(2):218-23. http://dx.doi.org/10.1111/j.1574-6968.2006.00522.x. PMid:17233733.

18. Aizawa S, Miyasawa-Hori H, Nakajo K, Washio J, Mayanagi H, Fukumoto S, et al. Effects of alpha-amylase and its inhibitors on acid production from cooked starch by oral streptococci. Caries Res. 2009;43(1):17-24. http://dx.doi.org/10.1159/000189703. PMid:19136828.

19. Marshall TA, Eichenberger-Gilmore JM, Larson MA, Warren JJ, Levy SM. Comparison of the intakes of sugars by young children with and without dental caries experience. J Am Dent Assoc. 2007 Jan;138(1):39-46. http://dx.doi.org/10.14219/jada.archive.2007.0019. PMid:17197400.

20. Cury JA, Rebelo MA, Del Bel Cury AA, Derbyshire MT, Tabchoury CP. Biochemical composition and cariogenicity of dental plaque formed in the presence of sucrose or glucose and fructose. Caries Res. 2000 Nov-Dec;34(6):491-7. http://dx.doi.org/10.1159/000016629. PMid:11093024.

21. Bradshaw DJ, Marsh PD, Hodgson RJ, Visser JM. Effects of glucose and fluoride on competition and metabolism within in vitro dental bacterial communities and biofilms. Caries Res. 2002 Mar-Apr;36(2):81-6. http://dx.doi.org/10.1159/000057864. PMid:12037363.

22. Aires CP, Tabchoury CP, Del Bel Cury AA, Koo H, Cury JA. Effect of sucrose concentration on dental biofilm formed in situ and on enamel demineralization. Caries Res. 2006;40(1):28-32. http://dx.doi.org/10.1159/000088902. PMid:16352877.

23. Ccahuana-Vásquez RA, Tabchoury CP, Tenuta LM, Del Bel Cury AA, Vale GC, Cury JA. Effect of frequency of sucrose exposure on dental biofilm composition and enamel demineralization in the presence of fluoride. Caries Res. 2007;41(1):9-15. http://dx.doi.org/10.1159/000096100. PMid:17167254.

24. Arthur RA, Cury AADB, Graner RO, Rosalen PL, Vale GC, Leme AF, et al. Genotypic and phenotypic analysis of S. mutans isolated from dental biofilms formed in vivo under high cariogenic conditions. Braz Dent J. 2011;22(4):267-74. http://dx.doi.org/10.1590/S0103-64402011000400001. PMid:21861023.

25. Luppens SB, Kara D, Bandounas L, Jonker MJ, Wittink FR, Bruning O, et al. Effect of Veillonella parvula on the antimicrobial resistance and gene expression of Streptococcus mutans grown in a dual-species biofilm. Oral Microbiol Immunol. 2008 Jun;23(3):183-9. http://dx.doi.org/10.1111/j.1399-302X.2007.00409.x. PMid:18402603.

26. Maiti PK, Haldar J, Mukherjee P, Dey R. Anaerobic culture on growth efficient bi-layered culture plate in a modified candle jar using a rapid and slow combustion system. Indian J Med Microbiol. 2013 Apr-Jun;31(2):173-6. http://dx.doi.org/10.4103/0255-0857.115218. PMid:23867675.

27. Renye JA Jr, Piggot PJ, Daneo-Moore L, Buttaro BA. Persistence of Streptococcus mutans in stationary-phase batch cultures and biofilms. Appl Environ Microbiol. 2004 Oct;70(10):6181-7. http://dx.doi.org/10.1128/AEM.70.10.6181-6187.2004. PMid:15466565.

28. Moye ZD, Zeng L, Burne RA. Modification of gene expression and virulence traits in Streptococcus mutans in response to carbohydrate availability. Appl Environ Microbiol. 2014 Feb;80(3):972-85. http://dx.doi.org/10.1128/AEM.03579-13. PMid:24271168.

29. Xiao J, Koo H. Structural organization and dynamics of exopolysaccharide matrix and microcolonies formation by Streptococcus mutans in biofilms. J Appl Microbiol. 2010 Jun;108(6):2103-13. http://dx.doi.org/10.1111/j.1365-2672.2009.04616.x. PMid:19941630.

30. World Health Organization. Exclusive Breastfeeding [Internet]. Geneva: WHO [cited 2013 Jul 14]. Available from: http://www.who.int/nutrition/topics/exclusive_breastfeeding/en/

31. American Academy of Pediatrics. Breastfeeding and the use of human milk. Pediatrics. 2012 Mar;129(3):e827-41. http://dx.doi.org/10.1542/peds.2011-3552. PMid:22371471.

32. Kato T, Yorifuji T, Yamakawa M, Inoue S, Saito K, Doi H, et al. Association of breast feeding with early childhood dental caries: Japanese population-based study. BMJ Open. 2015 Mar;5(3):e006982. http://dx.doi.org/10.1136/bmjopen-2014-006982. PMid:25795694.

33. Perera PJ, Fernando MP, Warnakulasooriya TD, Ranathunga N. Effect of feeding practices on dental caries among preschool children: a hospital based analytical cross sectional study. Asia Pac J Clin Nutr. 2014;23(2):272-7. http://dx.doi.org/10.6133/apjcn.2014.23.2.13. PMid:24901097.

34. Hamrǽus L, Lönnerdal B. Nutritional aspects of milk proteins. In: Fox PF, McSweeney PLH, editors. Advanced dairy chemistry- 1 Proteins. New York: Kluwer Academic/Plenum Publishers; 2003. v. 1, p. 605-45.

35. Aimutis WR. Lactose cariogenicity with an emphasis on childhood dental caries. Int Dairy J. 2012 Feb;22(2):152-8. http://dx.doi.org/10.1016/j.idairyj.2011.10.007.

36. Webb AJ, Homer KA, Hosie AH. A phosphoenolpyruvate-dependent phosphotransferase system is the principal maltose transporter in Streptococcus mutans. J Bacteriol. 2007 Apr;189(8):3322-7. http://dx.doi.org/10.1128/JB.01633-06. PMid:17277067.

37. Li Y, Burne RA. Regulation of the gtfBC and ftf genes of Streptococcus mutans in biofilms in response to pH and carbohydrate. Microbiology. 2001 Oct;147(Pt 10):2841-8. http://dx.doi.org/10.1099/00221287-147-10-2841. PMid:11577162.

38. Devulapalle KS, Gómez de Segura A, Ferrer M, Alcalde M, Mooser G, Plou FJ. Effect of carbohydrate fatty acid esters on Streptococcus sobrinus and glucosyltransferase activity. Carbohydr Res. 2004 Apr;339(6):1029-34. http://dx.doi.org/10.1016/j.carres.2004.01.007. PMid:15063188.

39. Koo H, Falsetta ML, Klein MI. The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm. J Dent Res. 2013 Dec;92(12):1065-73. http://dx.doi.org/10.1177/0022034513504218. PMid:24045647.

40. Nishimura J, Saito T, Yoneyama H, Bai LL, Okumura K, Isogai E. Biofilm formation by Streptococcus mutans and related bacteria. Adv Microbiol. 2012;2(03):208-15. http://dx.doi.org/10.4236/aim.2012.23025.

41. Hashizume-Takizawa T, Shinozaki-Kuwahara N, Tomita N, Kurita-Ochiai T. Establishment of a convenient sandwich-ELISA for direct quantification of glucosyltransferase-I: application for dual diagnosis of dental caries. Monoclon Antib Immunodiagn Immunother. 2014;33(2):89-93. http://dx.doi.org/10.1089/mab.2013.0076. PMid:24746149.

42. Kneist S, Kubieziel H, Willershausen B, Küpper H, Callaway A. Modeling of S. mutans and A. naeslundii acid production in vitro with caries incidence of low- and high-risk children. Quintessence Int. 2012;43(5):413-20. PMid:22536593.

588019e07f8c9d0a098b539b rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections