Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/doi/10.1590/1807-2577.00522
Revista de Odontologia da UNESP
Original Article

Glass ionomer heated or not to identify bone defect created in rat calvaria

Ionômero de vidro aquecido ou não para identificação de defeitos ósseos criados em calvárias de ratos

Marcela Lucio CALDEIRA; Valéria Rodrigues FREITAS; José Ricardo SANTOS; Maria Júlia Giancursi ABONIZIO; Maria Fernanda do NASCIMENTO; Larissa Sgarbosa de Araújo MATUDA; Carolina dos Santos SANTINONI

Downloads: 0
Views: 778

Abstract

Abstract: Introduction: Some experimental models have been used to evaluate the use of biomaterials in bone regeneration. Among them are the critical size defects (CSD) created in rat calvaria. An experimental model has been described in the literature, in which “L” markings are performed on the margins of the bone defects in order to assist in the precise identification of these defects during laboratory processing and analysis of the results. In the proposed model, the “L” markings are filled with amalgam.

Objective: The purpose of the present study was to evaluate the amalgam replacement of an experimental bony defect model in rat calvaria by heated or unheated glass ionomer.

Material and method: 24 rats were used. A 5 mm CSD was created at each animal calvaria. Two “L” shaped markings were made 2 mm from the margins of the bone defect, filled with amalgam (Group AM), heated glass ionomer cement (Group GIh) or not (Group GI). The animals were euthanized 15 days postoperatively. The areas of the surgical defect and the L-shaped marking were histomorphometrically analyzed and the data were analyzed statistically (p <0.05).

Result: There were no significant clinical, histological or methodological differences among the experimental groups.

Conclusion: It can be concluded that GI can replace AM in the proposed experimental model and GI heating did not promote additional benefits.

Keywords

Glass ionomer cements, dental amalgam, bone regeneration, rats

Resumo

Resumo: Introdução: Alguns modelos experimentais têm sido usados para avaliar o uso de biomateriais na regeneração óssea. Entre eles estão os defeitos de tamanho crítico (DTC) criados em calvárias de ratos. Um modelo experimental foi descrito na literatura onde marcações em L são realizadas nas margens do defeito ósseo para auxiliar na identificação precisa desses defeitos durante o processamento laboratorial e análise dos resultados. No modelo experimental proposto, as marcações em “L” são preenchidas com amálgama.

Objetivo: Avaliar a substituição do amálgama por ionômero de vidro aquecido ou não em um modelo experimental para identificação de defeito ósseo criado em calvária de ratos.

Material e método: Foram utilizados 24 ratos. Um DTC de 5 mm de diâmetro foi criado na calvária de cada animal. Duas marcações em “L” foram realizadas a 2 mm das margens do defeito ósseo, preenchidas com amálgama (Grupo AM), ionômero de vidro aquecido (Grupo CIVaq) ou não (Grupo CIV). Os animais foram eutanasiados aos 15 dias pós-operatórios. A área do defeito cirúrgico e das marcações em “L” foram histomorfometricamente avaliadas e os dados estatisticamente analisados (p<0,05).

Resultado: Não houve diferença estatisticamente significativa entre os grupos experimentais para as análises metodológicas, clínicas ou histomorfométrica realizadas.

Conclusão: Dentro dos limites deste estudo, pode-se concluir que CIV pode substituir o AM no modelo experimental proposto e o aquecimento do CIV não promoveu benefícios adicionais.
 

Palavras-chave

Cimentos de ionômeros de vidro, amálgama dentário, regeneração óssea, rats

References

1 Santinoni CS, Neves APC, Almeida BFM, Kajimoto NC, Pola NM, Caliente EA, et al. Bone marrow coagulated and low-level laser therapy accelerate bone healing by enhancing angiogenesis, cell proliferation, osteoblast differentiation, and mineralization. J Biomed Mater Res A. 2021 Jun;109(6):849-58. http://dx.doi.org/10.1002/jbm.a.37076. PMid:32815657.

2 Amadei SU, Silveira VAS, Pereira AC, Carvalho YR, Rocha RF. Effect of estrogen deficiency on bone turnover and bone repair. J Bras Patol Med Lab. 2006 Feb;42(1):5-12.

3 Mijiritsky E, Ben Zaken H, Shacham M, Cinar IC, Tore C, Nagy K, et al. Variety of surgical guides and protocols for bone reduction prior to implant placement: a narrative review. Int J Environ Res Public Health. 2021 Feb;18(5):2341. http://dx.doi.org/10.3390/ijerph18052341. PMid:33673563.

4 Barata TJE, Bresciani E, Adachi A, Fagundes TC, Carvalho CAR, Navarro MFL. Influence of ultrasonic setting on compressive and diametral tensile strengths of glass ionomer cements. Mater Res. 2008 Mar;11(1):57-61. http://dx.doi.org/10.1590/S1516-14392008000100011.

5 Garcia VG, da Conceição JM, Fernandes LA, de Almeida JM, Nagata MJ, Bosco AF, et al. Effects of LLLT in combination with bisphosphonate on bone healing in critical size defects: a histological and histometric study in rat calvaria. Lasers Med Sci. 2013 Feb;28(2):407-14. http://dx.doi.org/10.1007/s10103-012-1068-5. PMid:22370617.

6 Messora M, Braga L, Oliveira G, Oliveira LF, Milagres R, Kawata L, et al. Healing of fresh frozen bone allograft with or without platelet-rich plasma: a histologic and histometric study in rats. Clin Implant Dent Relat Res. 2013 Jun;15(3):438-47. http://dx.doi.org/10.1111/j.1708-8208.2011.00419.x. PMid:22176648.

7 Nagata MJ, Furlaneto FA, Moretti AJ, Bouquot JE, Ahn CW, Messora MR, et al. Bone healing in critical-size defects treated with new bioactive glass/calcium sulfate: a histologic and histometric study in rat calvaria. J Biomed Mater Res B Appl Biomater. 2010 Nov;95(2):269-75. http://dx.doi.org/10.1002/jbm.b.31710. PMid:20862764.

8 Bosch C, Melsen B, Vargervik K. Importance of the critical-size bone defect in testing bone-regeneration materials. J Craniofac Surg. 1998 Jul;9(4):310-6. http://dx.doi.org/10.1097/00001665-199807000-00004. PMid:9780924.

9 Messora MR, Nagata MJ, Mariano RC, Dornelles RC, Bomfim SR, Fucini SE, et al. Bone healing in critical-size defects treated with platelet-rich plasma: a histologic and histometric study in rat calvaria. J Periodontal Res. 2008 Apr;43(2):217-23. http://dx.doi.org/10.1111/j.1600-0765.2007.01017.x. PMid:18302625.

10 Grigoletto JC, Oliveira AS, Muñoz SIS, Alberguini LBA, Takayanagui AMM. Exposição ocupacional por uso de mercúrio em odontologia: uma revisão bibliográfica. Cien Saude Colet. 2008 Abr;13(2):533-42. http://dx.doi.org/10.1590/S1413-81232008000200029. PMid:18813570.

11 Jesus LF, Marinha MS, Moreira FR. Amálgama dentário: fonte de contaminação por mercúrio para Odontologia e para o meio ambiente. Cad Saude Colet. 2010 Out-Dez;18(4):509-15.

12 Nicholson JW, Sidhu SK, Czarnecka B. Enhancing the mechanical properties of glass-ionomer dental cements: a review. Materials. 2020 May;13(11):2510. http://dx.doi.org/10.3390/ma13112510. PMid:32486416.

13 Ching HS, Luddin N, Kannan TP, Ab Rahman I, Abdul Ghani NRN. Modification of glass ionomer cements on their physical-mechanical and antimicrobial properties. J Esthet Restor Dent. 2018 Nov;30(6):557-71. http://dx.doi.org/10.1111/jerd.12413. PMid:30394667.

14 Mustafa HA, Soares AP, Paris S, Elhennawy K, Zaslansky P. The forgotten merits of GIC restorations: a systematic review. Clin Oral Investig. 2020 Jul;24(7):2189-201. http://dx.doi.org/10.1007/s00784-020-03334-0. PMid:32514903.

15 Bail M, Malacarne-Zanon J, Silva SM, Anauate-Netto A, Nascimento FD, Amore R, et al. Effect of air-drying on the solvent evaporation, degree of conversion and water sorption/solubility of dental adhesive models. J Mater Sci Mater Med. 2012 Mar;23(3):629-38. http://dx.doi.org/10.1007/s10856-011-4541-y. PMid:22210310.

16 Elliott JE, Anseth JW, Bowman CN. Kinetic modeling of the effect of solvent concentration on primary cyclization during polymerization of multifunctional monomers. Chem Eng Sci. 2001 May;56(10):3173-84. http://dx.doi.org/10.1016/S0009-2509(00)00547-9.

17 Giannini M, Arrais CA, Vermelho PM, Reis RS, Santos LP, Leite ER. Effects of the solvent evaporation technique on the degree of conversion of one-bottle adhesive systems. Oper Dent. 2008 Mar-Apr;33(2):149-54. http://dx.doi.org/10.2341/07-54. PMid:18435188.

18 Klein-Júnior CA, Zander-Grande C, Amaral R, Stanislawczuk R, Garcia EJ, Baumhardt-Neto R, et al. Evaporating solvents with a warm air-stream: effects on adhesive layer properties and resin-dentin bond strengths. J Dent. 2008 Aug;36(8):618-25. http://dx.doi.org/10.1016/j.jdent.2008.04.014. PMid:18550254.

19 Lovell LG, Lu H, Elliott JE, Stansbury JW, Bowman CN. The effect of cure rate on the mechanical properties of dental resins. Dent Mater. 2001 Nov;17(6):504-11. http://dx.doi.org/10.1016/S0109-5641(01)00010-0. PMid:11567688.

20 Matuda LS, Marchi GM, Aguiar TR, Leme AA, Ambrosano GM, Bedran-Russo AK. Dental adhesives and strategies for displacement of water/solvents from collagen fibrils. Dent Mater. 2016 Jun;32(6):723-31. http://dx.doi.org/10.1016/j.dental.2016.03.009. PMid:27068741.

21 Ye Q, Spencer P, Wang Y, Misra A. Relationship of solvent to the photopolymerization process, properties, and structure in model dentin adhesives. J Biomed Mater Res A. 2007 Feb;80(2):342-50. http://dx.doi.org/10.1002/jbm.a.30890. PMid:17001655.

22 Mariano R, Messora M, de Morais A, Nagata M, Furlaneto F, Avelino C, et al. Bone healing in critical-size defects treated with platelet-rich plasma: a histologic and histometric study in the calvaria of diabetic rat. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010 Jan;109(1):72-8. http://dx.doi.org/10.1016/j.tripleo.2009.08.003. PMid:19926499.

23 Nagata M, Messora M, Okamoto R, Campos N, Pola N, Esper L, et al. Influence of the proportion of particulate autogenous bone graft/platelet-rich plasma on bone healing in critical-size defects: an immunohistochemical analysis in rat calvaria. Bone. 2009 Aug;45(2):339-45. http://dx.doi.org/10.1016/j.bone.2009.04.246. PMid:19410024.

24 Nagata MJ, Santinoni CS, Pola NM, de Campos N, Messora MR, Bomfim SR, et al. Bone marrow aspirate combined with low-level laser therapy: a new therapeutic approach to enhance bone healing. J Photochem Photobiol B. 2013 Apr;121:6-14. http://dx.doi.org/10.1016/j.jphotobiol.2013.01.013. PMid:23474527.

25 Oliveira LSAF, Oliveira CS, Machado APL, Rosa FP. Biomateriais com aplicação na regeneração óssea: método de análise e perspectivas futuras. Rev Ciênc Méd Biol. 2010;9(1):37-44. http://dx.doi.org/10.9771/cmbio.v9i1.4730.
 


Submitted date:
02/10/2022

Accepted date:
04/26/2022

627e9271a9539560735cc085 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections