Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/5880192b7f8c9d0a098b5003
Revista de Odontologia da UNESP
Original Article

Effect of ultrasonic excitation on the ultimate tensile strength of glass ionomer cements after different water storage times

Efeito da excitação ultrassônica na resistência máxima à tração de cimentos de ionômero de vidro, após diferentes períodos de armazenamento

Azevedo, Elcilaine Rizzato; Coldebella, Cármen Regina; Souza, Juliana Feltrin de; Zuanon, Ângela Cristina Cilense

Downloads: 0
Views: 554

Abstract

Introduction: The application of ultrasound waves with a conventional dental ultrasonic scaler on glass ionomer cements surface accelerated initial setting reaction and improved the mechanical properties. Objective: This study evaluated the ultimate tensile strength of glass ionomer cements after ultrasonic excitation and different water storage times. Material and method: Twelve specimens of each material (Fuji IX GP, Ketac Molar Easymix and Vitremer) were prepared, and six of each received a 30-second ultrasound application during initial setting of the cements. After storage of the 24 hours or 30 days, the specimens were sectioned into stick to microtensile testing and the mean ultimate tensile strength values were submitted to Welch’s ANOVA and Tamhane’s test. Result: The results showed that the Vitremer presented the highest mean tensile strength. The chemically set Fuji IX GP presented significantly higher mean tensile strength after 30 days than after 24 hours of storage (p < 0.05). At 24 hours, the ultrasonically set Fuji IX GP presented significantly higher mean tensile strength than their counterparts set under standard conditions (p < 0.05). Conclusion: Treatment with ultrasound increased the tensile strength of Fuji IX GP in the early period of maturation.

Keywords

Glass ionomer cements, ultrasonics, tensile strength.

Resumo

Introdução: A aplicação de ondas ultrassônicas no cimento de ionômero de vidro acelera a velocidade da reação de presa inicial e melhora as propriedades mecânicas do material. Objetivo: Este estudo avaliou a resistência máxima à tração de cimentos de ionômero de vidro após excitação ultrassônica e tempos diferentes de armazenamento de água. Material e método: Doze corpos de prova de cada material (Fuji IX GP, Ketac Molar Easymix e Vitremer) foram preparados e seis receberam aplicação de ultrassom por 30 segundos durante a reação de presa inicial. Após armazenamento de 24 horas ou 30 dias, foram seccionados em espécimes na forma de palito e submetidos ao teste de microtração. Os valores médios de resistência à tração foram avaliados pela análise de variância e teste de Tamhane com correção de Welch. Resultado: O cimento Vitremer apresentou as maiores médias de resistência à tração. Foi observado que o tratamento com ultrassom aumentou a resistência do cimento Fuji IX GP com 24 horas de armazenamento e esta se manteve após 30 dias de armazenamento (p < 0,05). No grupo controle, Fuji IX GP com 30 dias armazenamento apresentou resistência à tração maior que o armazenamento de 24 horas (p < 0,05). Conclusão: O tratamento com ultrassom aumentou a resistência à tração do Fuji IX GP, no período inicial de sua maturação.

Palavras-chave

Cimentos de ionômero de vidro, ultrassom, resistência à tração.

References



1. Mount GJ. Glass ionomers: a review of their current status. Oper Dent. 1999;24:115-24. PMid: 10483449

2. Mount GJ. Buonocore memorial lecture. Glass-ionomer cements: past, present and future. Oper Dent. 1994;19:82-90. PMid: 9028245

3. McLean JW. Glass-ionomer cements. Br Dent J. 1988;164:293-300.

4. Twomey E, Towler MR, Crowley CM, Doyle J, Hanspshire SJ. Investigation into the ultrasonic setting of glass ionomer cements. Part II: setting times and compressive strengths. J Mater Sci Mater Med. 2004;39:4631-2. http://dx.doi.org/10.1023/B:JMSC.0000034158.69184.84

5. Towler MR, Bushbly AJ, Billington RW, Hill RG. A preliminary comparison of the mechanical properties of chemically cured and ultrasonically cured glass ionomer cements, using nano-indentation techniques. Biomaterials.2001;22:1401-6. http://dx.doi.org/10.1016/ S0142-9612(00)00297-0

6. Kleverlaan CJ, Van Duinen RN, Feilzer AJ. Mechanical properties of glass ionomer cements affected by curing methods. Dent Mater. 2004;20:45-50. PMid: 14698773

7. Cattani-Lorente MA, Dupuis V, Payan J, Moya F, Meyer JM. Effect of water on the physical properties of resin-modified glass-ionomer cements. Dent Mater. 1999;15:71-8. PMid: 10483398

8. Tanner DA, Rushe N, Towler MR. Ultrasonically set glass polyalkenoate cements of orthodontics applications. J Mater Sci Mater Med. 2006;17:313-8. PMid: 16617409

9. Towler MR, Crowley CM, Hill RG. Investigation into ultrasonic setting of glass ionomer cements. Part I: postulated modalities. J Mater Sci Mater Med. 2003;22:1401-6. http://dx.doi.org/10.1023/A:1022946605523

10. Fagundes TC, Barata TJE, Bresciani E, Cefaly DFG, Carvalho CAR, Navarro MFL. Influence of ultrasonic setting on tensile bond strength of glass-ionomer cements to dentin. J Adhes Dent. 2006; 8: 401-7. PMid: 17243598

11. Algera TJ, Kleverlaan CJ, de Gee AJ, Prahl-Andersen B, Feilzer AJ. The influence of accelerating the setting rate by ultrasound or heat on the bond strength of the glass-ionomers used as orthodontic bracket cement. Eur J Orthod. 2005; 27:472-6. http://dx.doi.org/10.1093/ ejo/cji041

12. Barata TJE, Bresciani E, Adachi A, Fagundes TC, Carvalho CAR, Navarro MFL. Influence of ultrasonic setting on compressive and diametral tensile strengths of glass ionomer cements. Mater Res. 2008;11:57-61. http://dx.doi.org/10.1590/S1516-14392008000100011

13. Azevedo ER, Coldebella CR, Zuanon ACC. Effect of ultrasonic excitation on the microtensile bond strength of glass ionomer cements to dentin after different water storage times. Ultrasound Med Biol. 2011;37: 2133-8. PMid: 22036636

14. Coldebella CR, Santos-Pinto L, Zuanon ACC. Effect of ultrasonic excitation on the porosity of glass ionomer cement: a scanning electron microscope evaluation. Microsc Res Tech. 2011;74:54-57. PMid: 21181710

15. Talal A, Tanner KE, Billington R, Pearson GJ. Effect of ultrasound on the setting characteristics of glass ionomer cements studied by Fourier Transform Infrared Spectroscopy. J Mater Sci Mater Med. 2009;20:405-11. http://dx.doi.org/10.1007/s10856-008-3578-z

16. Sano H, Ciucchi B, Matthews WG, Pashley DH. Tensile properties of mineralized and demineralized human and bovine dentin. J Dent Res. 1994;73:1205-11. http://dx.doi.org/10.1177/00220345940730061201

17. Pashley DH, Carvalho R M, Sano H, Nakajima M, Yoshiyama M, Shono Y, et al. The microtensile bond test: a review. J Adhes Dent. 1999;1:299-309. PMid: 11725659

18. Giannini M, Soares CJ, Carvalho RM. Ultimate tensile strength of tooth structures. Dent Mater. 2004;20:322-9. PMid: 15019445

19. Gladys S, Van Meerbeek B, Braem M, Lambrechts P, Vanherle GJ. Comparative physico- mechanical characterization of new hybrid restorative materials with conventional glass-ionomer and resin composite restorative materials. Dent Res. 1997;76:883-94. PMid: 9126185

20. Xie D, Brantley WA, Culbertson BM, Wang G. Mechanical properties and microstructures of glass-ionomer cements. Dent Mater. 2000;16:129-38. http://dx.doi.org/10.1016/S0109-5641(99)00093-7

21. Yap AU, Pek YS, Cheang P. Physico-mechanical properties of a fast-set highly viscous GIC restorative. J Oral Rehabil. 2003;30:1-8. PMid: 12485377

22. Arcoria CJ, Butler JR, Wagner MJ, Vitasek BA. Bending strength of Fuji and Ketac glass ionomer after sonication. J Oral Rehabil. 1992;19:607‑13. PMid: 1469496

23. Yap AU, Tan A., Goh AT, Goh DC, Chin KC. Effect of surface treatment and cement maturation on the bond strength of resin-modified glass ionomers to dentin. Oper Dent. 2003;28:728-33. PMID: 14653287
5880192b7f8c9d0a098b5003 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections