Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/588018f77f8c9d0a098b4ee8
Revista de Odontologia da UNESP
Original Article

A comparative study of microstrain around three-Morse taper implants, casting with machined and plastic copings, under axial loading

Extensometria: estudo das microdeformações ao redor de três implantes de conexão protética cone-Morse, fundidos com coifas plásticas e usinadas, submetidos à carga vertical estática

Nishioka, Renato Sussumu; Santos, Vivian Mayumi Miyazaki; Nishioka, Gabriela Nogueira de Melo; Balducci, Ivan

Downloads: 0
Views: 1059

Abstract

Objective: The aim of this in vitro study was quantify the microstrain around Morse taper implants using plastic(n=5) and machined(n=5) copings under axial loading. Methods: Three implants of Morse taper junction were embedded in the center of the polyurethane block. Four Strain gauges (SG) were bonded on the surface of polyurethane and it was designated SG1 placed mesially adjacent to implant A, SG2 and SG3 were placed mesially and distally adjacent to the implant B and SG4 was placed distally adjacent to the implant C. The ten CoCr superstructure’s occlusal screws were tightened onto the Microunit abutments with a torque of 10 N.cm using the manufacture’s manual torque- controlling device. Axial load of 30kg was applied at three predetermined points (A, B, C). The strain gauges were only capable of detecting strain in a limited segment around the implants.   All of the data were compared using RM ANOVA and post hoc multiple range Tukey test (α=.005).  Result. The results did not show a statistically significant difference for the copings (p= 0,0838), but showed a statistically significant difference for the loading points (p= 0.0338). Conclusion: There were not evidences that the machined copings in reducing the strain around implant. The loading point persuaded in the magnitude of micro strain.

Keywords

Morse taper, strain development, biomechanics, axial loading

Resumo

Objetivo: Analisar, por meio da extensometria, as microdeformações ao redor de implantes cone-Morse com diferentes tipos de coifas, plásticas(n=5) e usinadas(n=5). Foram inseridos linearmente três implantes cone-Morse no bloco de poliuretano. Método: Quatro extensômetros (SG) foram colados na superfície do poliuretano e foram  identificados pelo SG1 que foi colado adjacente e mesialmente ao implante A,  pelo SG2 e SG3 colados adjacentes mesial e distal ao implante B e o SG4 que foi colado distal ao implante C. Dez supraestruturas em CoCr foram parafusadas sobre pilares protéticos Microunit com torque de 10N.cm com auxílio de um torquímetro manual. Cargas axiais de 30kg foram aplicadas sobre pontos pré determinadas(A,B,C) sobre os respectivos parafusos de retenção das próteses. Os extensômetros foram capazes de analisar as microdeformações num limitado segmento ao redor dos implantes. Os registros foram comparados utilizando ANOVA de medidas repetitivas e teste múltiplo de Tukey  α=.005).  Resultado: Os registros não evidenciaram diferença estatística signficante para o tipo de coifa (p= 0,0838), contudo evidenciou-se diferença estatística para os pontos de aplicação de carga (p= 0.0338). Conclusão: Não houve evidências que as coifas usinadas reduziram as microdeformações ao redor dos implantes. O ponto de aplicação de carga determinou a quantidade de micro deformações. 

Palavras-chave

Cone, microdeformação, biomecânica, carga axial.

References



1. Moraes LMC, Rossetti PHO, Rossetti LMN, Pedreira APRV, Valle AL, Bonachela WC. Marginal fit at cylinder-abutment interface before and after overcasting procedure. J Appl Oral Sci. 2005;13:366-71. PMid:20865221. http://dx.doi.org/10.1590/S1678-77572005000400010

2. Ueda C, Markarian RA, Sendyk CL, Laganá DC. Photoelastic analysis of stress distribution on parallel and angled implants after installation of fixed prostheses. Braz Oral Res. 2004;18:45-52. PMid:15273786. http://dx.doi.org/10.1590/S1806-83242004000100009

3. Vasconcellos DK, Bottino MA, Nishioka RS, Valandro LF, Costa EMV. The infuence of different screw tightening forces on the vertical misfit of implant-supported frameworks. J Appl Oral Sci. 2005;13:120-5. PMid:20924534. http://dx.doi.org/10.1590/S1678-77572005000200005

4. Nishioka RS, Nishioka LNBM, Abreu CW, Vasconcellos LGO, Balducci I. Machined and plastic copings in three-element prostheses with different types of implantabutment joints: a strain gauge comparative analysis. J Appl Oral Sci. 2010;18:225-30. PMid:20856998. http:// dx.doi.org/10.1590/S1678-77572010000300005

5. Eskitascioglu G, Usumez A, Sevimay M, Soykan E, Unsal E. The influence of occlusal loading location on stresses transferred to implant‑supported prostheses and supporting bone: a three-dimensional finite element study. J Prosthet Dent. 2004;91:144-50. PMid:14970760. http://dx.doi.org/10.1016/j.prosdent.2003.10.018

6. Cehreli M, Duyck J, De Cooman M, Puers R, Naert I. Implant design and interface force transfer: a photoelastic and sttrain-gauge analysis. Clin Oral Implants Res. 2004;15:249-57. PMid:15008938. http://dx.doi.org/10.1111/j.1600-0501.2004.00979.x

7. Duyck J, Van Oosterwyck H, Vander Stolen J, De Cooman M, Puers R, Naert I. Magnitude and distribution of occlusal forces on oral implants supporting fixed prostheses: an in vivo study. Clin Oral Impl Res. 2000;11:465-75. PMid:11168239. http://dx.doi.org/10.1034/ j.1600-0501.2000.011005465.x

8. Duyck J, Ronold HJ, Van Oosterwyck H , Naert I, Van Sloten J, Ellingsen J E. The influence of static and dynamic loading on marginal bone reactions around osseointegrated implants: an animal experiemental study. Clin Oral Impl Res. 2001;12:207-18. PMid:11359477. http://dx.doi.org/10.1034/j.1600-0501.2001.012003207.x

9. Hekimoglu C, Anil N, Cehreli M. Analysis of strain around endosseous implants opposing natural teeth or implants. J Prosthet Dent. 2004; 92:441-6. PMid:15523333. http://dx.doi.org/10.1016/j.prosdent.2004.07.023

10. Karl M, Rosch S, Graef F, Taylor T, Hechmann S. Static implant loading caused by as-cast metal and ceramic-veneered superstructures. J Prosthet Dent. 2005;93:324-30. PMid:15798682. http://dx.doi.org/10.1016/j.prosdent.2004.12.006

11. Nishioka RS, Vasconcellos LGO, Nishioka LNB. External hexagon and internal hexagon in straight and offset implant placement: strain guge analysis. Implant Dent. 2009;18:512-20. PMid:20009605. http://dx.doi.org/10.1097/ID.0b013e3181bcc621

12. Çehreli MC, Iplikçioglu H. In vitro strain gauge analysis of axial and off-axial loading on implant supported fixed partial dentures. Implant Dent. 2002;11:286-92. http://dx.doi.org/10.1097/00008505-200207000-00015

13. Heckmann SM, Karl M, Winter W, Grael F, Taylor TD. Loading of bone surrounding implants through three-unit fixed partial denture fixation: a finite elements analysis based on in vitro and in vivo strain measurements. Clin Oral Implants Res. 2006;17:345-50. PMid:16672032. http://dx.doi.org/10.1111/j.1600-0501.2005.01177.x

14. Karl M, Taylor TD, Wichmann MG, Heckmann SM. In vivo stress behavior in cemented and screw-retained five-unit implant FPDs. J Prosthodont. 2006;15:20-4. PMid:16433647. http://dx.doi.org/10.1111/j.1532-849X.2006.00064.x

15. Karl M, Wichmann MG, Winter W, Graef F, Taylor T, Heckmann SM. Influence of fixation mode and superstructure span upon strain development of implant fixed partial dentures. J Prosthodont. 2008;17:3-8. PMid:17927737.

16. Cehreli M , Sahin S, Akca K. Role of mechanical environment and implant design on bone tissue differentiation: current knowledge and future contexts. J Dent. 2004; 32:123-32. http://dx.doi.org/10.1016/j.jdent.2003.09.003

17. Akça K, Cehreli MC, Iplikçioglu H. A comparison of three-dimensional finite element stress analysis with in vitro strain gauge measurements. Int J Prosthodont. 2002;15:115-21. PMid:11951799.

18. Maeda Y, Satoh T, Sogo M. In vitro differences of stress concentrations for internal and external hex implant-abutment connections: a short communication. J Oral Rehabil. 2006;33:75-8. PMid:16409521. http://dx.doi.org/10.1111/j.1365-2842.2006.01545.x

19. Alonso FR, Triches DF, Teixeira ER, Hirakata LM. Marginal fit of implant-supported fixed prosthesis frameworks with prefabricated and calcinable cylinders. Rev Odonto Ciênc. 2008;23:320-4.

20. Castilho AA, Kojima AN, Pereira SM, Vasconcellos DK, Itinoche MK, Faria R, et al. In vitro evaluation of the precision of working casts for implant-supported restoration with multiple abutments. J Appl Oral Sci. 2007;15:241-6. http://dx.doi.org/10.1590/S1678- 77572007000300016

21. Akça K, Chang T L, Tekdemir I, Fanuscu, M I. Biomechanical aspects of initial intraosseous stability and implant design: a quantitative micro-morphometric analysis. Clin Oral Impl Res. 2006;17:465-72. PMid:16907780. http://dx.doi.org/10.1111/j.1600-0501.2006.01265.x

22. Abreu CW, Vasconcellos LGO, Balducci I, Nishioka RS. A comparative study of microstrain around three-Morse taper implants with machined and plastic copings under axial loading. Braz J Oral Sci. 2010; 9: 11-5. PMid:15248882. http://dx.doi.org/10.1111/j.1600- 0501.2004.01027.x

23. Heckmann SM, Karl M, Wichmann MG, Winter W, Graef F, Taylor TD. Cement fixation and screw retention: parameters of passive fit. An in vitro study of three-unit implant-supported fixed partial dentures. Clin Oral Implants Res. 2004;15:466-73. PMid:20976408. http:// dx.doi.org/10.1590/S1678-77572004000400016

24. Kano SC, Bonfante G, Hussne R, Siqueira AF. Use of base metal casting alloys for implant framework: marginal accuracy analysis. J Appl Oral Sci. 2004;12:337-43. PMid:20976408. http://dx.doi.org/10.1590/S1678-77572004000400016

25. Jaime APG, Vasconcellos DK, Mesquita AMM, Kimpara ET, Bottino MA. Effect of cast rectifiers on the marginal fito f ucla abutments. J Appl Oral Sci. 2007;15:169-74. PMid:19089125. http://dx.doi.org/10.1590/S1678-77572007000300004

26. Wiskott HWA, Belser UC. Lack of integration of smooth titanium surfaces: a working hypothesis based on strains generated in the surrounding bone. Clin Oral Implants Res. 1999;10:429-44. PMid:10740452. http://dx.doi.org/10.1034/j.1600-0501.1999.100601.x

27. Watanabe F, Uno I, Hata Y, Neuendorff G, Kirsch A. Analysis of stress distribution in a screw-retained implant prostheses. Int J Oral Maxillofac Implants. 2000; 15 :209-18. PMid:10795453.

28. Patterson E A, Burguete RL, Thoi MH, Jonhs R B. Distribution of load in an oral prosthesis system: an in vitro study. Int J Oral Maxillofac Implants. 1995;10:552-60. PMid:7590999.

29. Tashkandi EA, Lang BR, Edge MJ. Analysis of strain at selected bone sites of a cantilevered implant-supported prosthesis. J Prosthet Dent. 1996;76:158-64. http://dx.doi.org/10.1016/S0022-3913(96)90300-5

30. Mericske-Stern R, Assal P, Merickse E, Ing WB. Oclussal force and oral tactile sensibility measured in partially edentulous patients with ITI implants. Int J Oral Maxillofac Implants. 1995;10:345-54. PMid:7615331.
588018f77f8c9d0a098b4ee8 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections