Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/588018f07f8c9d0a098b4ecc
Revista de Odontologia da UNESP
Original Article

Chemical characterization and flexural strength of an acrylic resin after the incorporation of a polymer with antimicrobial activity

Caracterização química e resistência à flexão de uma resina acrílica após a incorporação de um polímero com atividade antimicrobiana

Rodriguez, Larissa Santana; Paleari, André Gustavo; Oliveira Júnior, Norberto Martins de; Marra, Juliê; Pero, Ana Carolina; Compagnoni, Marco Antonio

Downloads: 3
Views: 944

Abstract

Introduction: Acrylic resins with antimicrobial activity could offer patients complete denture and partial wearers’ improvement in their oral health by means of a better control of biofilm formation. Objective: The objective of this study was chemically characterize a denture base acrylic resin (Onda-Cryl) that was incorporated the antimicrobial polymer 2-tert-butylaminoethyl (PTBAEMA) and to evaluate the flexural strength of this resin. Material and method: Rectangular specimens were from a denture base acrylic resin with different concentrations of PTBAEMA (0, 5 and 10%). Specimens’ surfaces were assessed by ESCA to detect the presence of amine groups, represented by nitrogen ratios. Analysis of FTIR and DSC were used to evaluate the polymerization process and the influence of the incorporation of PTBAEMA in Tg of the resin, respectively. Flexural strength was evaluated and the results were analyzed by ANOVA/ Tukey HSD test (α = 0.05). Result: Different nitrogen ratios were observed for groups 0, 5 and 10% (0, 0.85 and 5.82% respectively), there was copolymerization between the resin and PTBAEMA, and reduction of Tg after incorporation of PTBAEMA. Significant differences were found for flexural strength (p < 0.05), the mean values were 94.7 ± 9.4A, 21.8 ± 3.4B, 13.0 ± 1.5C MPa for groups 0, 5 and 10%, respectively. Conclusion: The incorporation of PTBAEMA resulted in copolymerization, presence of amine groups on specimens’ surfaces, and in decrease of Tg and flexural strength.

Keywords

Denture, Acrylic resins, Antimicrobial agents

Resumo

Introdução: Resinas acrílicas com atividade antimicrobiana poderiam oferecer aos pacientes usuários de próteses parciais e totais melhorias na sua saúde oral por meio de um melhor controle de biofilme. Objetivo: O objetivo deste estudo foi caracterizar quimicamente uma resina acrílica para base protética (Onda-Cryl), à qual foi incorporado o polímero antimicrobiano 2-tert-butilaminoetil (PTBAEMA), além de avaliar a resistência à flexão dessa resina. Material e método: Foram confeccionados espécimes de formato retangular a partir da resina acrílica contendo diferentes concentrações de PTBAEMA (0, 5 e 10%). A superfície dos espécimes foi avaliada por meio de ESCA para detectar a presença de grupos amina, representada por índices de nitrogênio. As análises de FTIR e DSC foram utilizadas para avaliar o processo de polimerização e a influência da incorporação de PTBAEMA na Tg da resina, respectivamente. A resistência à flexão dos espécimes foi avaliada e os resultados foram analisados por meio de análise de variância a um fator (ANOVA), seguida pelo teste HSD de Tukey (α = 0,05). Resultado: Foram observados diferentes índices de nitrogênio para os grupos 0, 5 e 10% (0, 0,85 e 5,82%, respectivamente); houve copolimerização entre a resina e o PTBAEMA, e redução da Tg após incorporação. Foram encontradas diferenças significantes para a resistência à flexão (p < 0,05) cujos resultados foram 94,7 ± 9,4A, 21,8 ± 3,4B, 13,0 ± 1,5C MPa para os grupos 0, 5 e 10%, respectivamente. Conclusão: A incorporação de PTBAEMA resultou em copolimerização, presença de grupos amina na superfície dos espécimes e diminuição da Tg e da resistência à flexão.

Palavras-chave

Prótese total, resinas acrílicas, agentes antimicrobianos

References



1. Frenkel H, Harvey I, Newcombe RG. Oral health care among nursing home residents in Avon. Gerodontology. 2000; 17: 33-8. PMid:11203511. http://dx.doi.org/10.1111/j.1741-2358.2000.00033.x

2. Shibata T, Hamada N, Kimoto K, Sawada T, Sawada T, Kumada H, et al. Antifungal effect of acrylic resin containing apatite-coated TiO2 photocatalyst. Dent Mater J. 2007; 26: 437-44. PMid:17694755. http://dx.doi.org/10.4012/dmj.26.437

3. Casemiro LA, Martins CHG, Pires-de-Souza FCP, Panzeri H. Antimicrobial and mechanical properties of acrylic resins with incorporated silver-zinc zeolite- part I. Gerodontology. 2008; 25: 187-94. PMid:18194331. http://dx.doi.org/10.1111/j.1741-2358.2007.00198.x

4. Cunha TR, Regis RR, Bonatti MR, Souza RF. Influence of incorporation of fluoroalkyl methacrylates on roughness and flexural strength of a denture base acrylic resin. J Appl Oral Sci. 2009; 17: 103-7. PMid:19274394. http://dx.doi.org/10.1590/S1678-77572009000200006

5. Lefebvre CA, Wataha JC, Cibrika RM, Schuster GS, Parr GR. Effects of triclosan on the cytotoxicity and fungal growth on a soft denture liner. J Prosthet Dent. 2001; 85: 352-6. PMid:11319532. http://dx.doi.org/10.1067/mpr.2001.115249

6. Park SE, Chao M, Raj PA. Mechanical properties of surface-charged poly(methyl methacrylate) as denture resins. Int J Dent. 2009; 2009: 841431. Epub 2009 Apr 12.

7. Park SE, Periathamby AR, Loza JC. Effect of surface-charged poly(methyl methacrylate) on the adhesion of Candida albicans. J Prosthodont. 2003; 12: 249-54. http://dx.doi.org/10.1016/S1059-941X(03)00107-4

8. Pesci-Bardon C, Fosse T, Serre D, Madinier I. In vitro antiseptic properties of an ammonium compound combined with denture base acrylic resin. Gerodontology. 2006; 23: 111-6. PMid:16677185. http://dx.doi.org/10.1111/j.1741-2358.2006.00088.x

9. Pinto TMS, Neves ACC, Leão MVP, Jorge AOC. Vinegar as an antimicrobial agent for control of Candida spp. in complete denture wearers. J Appl Oral Sci. 2008; 16: 385-90. PMid:19082396. http://dx.doi.org/10.1590/S1678-77572008000600006

10. El-Charkawi H, El-Said EA, Safouh HM, El-Raghi N. Effect of addition antimicrobial agents to denture reliners. Egypt Dent J. 1994; 40: 785‑90. PMid:9588157

11. Truhlar MR, Shay K, Sohnle P. Use of a new assay technique for quantification of antifungal activity of nystatin incorporated in denture liners. J Prosthet Dent. 1994; 71: 517-24. http://dx.doi.org/10.1016/0022-3913(94)90193-7

12. Urban VM, Seó RS, Giannini M, Arrais CAG. Superficial distribution and identification of antifungal/antimicrobial agents on a modified tissue conditioner by SEM-EDS microanalysis: a preliminary study. J Prosthodont. 2009; 18: 603-10. PMid:19515168. http://dx.doi. org/10.1111/j.1532-849X.2009.00479.x

13. Matsuura T, Abe Y, Sato Y, Okamoto K, Ueshige M, Akagawa Y. Prolonged antimicrobial effect of tissue conditioners containing silverzeolite. J Dent. 1997; 25: 373-7. http://dx.doi.org/10.1016/S0300-5712(96)00050-4

14. Nikawa H, Yamamoto T, Hamada T, Rahardjo MB, Murata H. Antifungal effect of zeolite-incorporated tissue conditioner against Candida albicans growth and/or acid prodution. J Oral Rehabil. 1997; 24: 350-7. PMid:9183028. http://dx.doi.org/10.1046/j.1365-2842.1997.d01- 297.x

15. Moraes LGP, Rocha RSF, Menegazzo LM, Araújo EB, Yukimitu K, Moraes JCS. Infrared spectroscopy: a tool for determination of the degree of conversion in dental composites. J Appl Oral Sci. 2008; 16: 145-9. PMid:19089207. http://dx.doi.org/10.1590/S1678- 77572008000200012

16. Imazato S, Torri M, Tsuchitani Y, McCabe JF, Russell RRB. Incorporation of bacterial inhibitor into resin composite. J Dent Res. 1994; 73: 1437-43. PMid:8083440

17. Ignatova M, Voccia S, Gilbert B, Markova N, Cossement D, Gouttebaron R, et al. Combination of electrografting and atom-transfer radical polymerization for making the stainless steel surface antibacterial and protein antiadhesive. Langmuir. 2006; 22: 255-62. PMid:16378429. http://dx.doi.org/10.1021/la051954b

18. Lenoir S, Pagnoulle C, Galleni M, Compère P, Jérôme R, Detrembleur C. Polyolefin matrixes with permanent antibacterial activity: preparation, antibacterial activity, and action mode of the active species. Biomacromolecules. 2006; 7: 2291-6. PMid:16903673. http:// dx.doi.org/10.1021/bm050850c

19. Seyfriedsberger G, Rametsteiner K, Kern W. Polyethylene compounds with antimicrobial surface properties. Eur Polym J. 2006; 42: 3383-

9. http://dx.doi.org/10.1016/j.eurpolymj.2006.07.026

20. Thomassin JM, Lenoir S, Riga J, Jérôme R, Detrembleur C. Grafting of poly[2-(tert-butylamino)ethyl methacrylate] onto polypropylene by reactive blending and antibacterial activity of the copolymer. Biomacromolecules. 2007; 8: 1171-7. PMid:17348705. http://dx.doi. org/10.1021/bm0611228

21. Sosna F, Ottersbach P, Kossmann B. Antimicrobial additives. United States Patent US6790910. 2004.

22. Pero AC, Barbosa DB, Marra J, Ruvolo-Filho AC, Compagnoni MA. Influence of microwave polymerization method and thickness on porosity of acrylic resin. J Prosthodont. 2008; 17: 125-9. PMid:17971120. http://dx.doi.org/10.1111/j.1532-849X.2007.00264.x

23. International Organization for Standardization. Specification 1567: denture base polymers. 2nd ed. Geneva: ISO; 1998.

24. Pero AC, Marra J, Paleari AG, de Souza RF, Ruvolo-Filho A, Compagnoni MA. Reliability of a method for evaluating porosity in denture base resins. Gerodontology. 2011;28:127-33. PMid:20015223. http://dx.doi.org/10.1111/j.1741-2358.2009.00347.x

25. Paleari AG, Marra J, Pero AC, Rodriguez LS, Ruvolo-Filho A, Compagnoni MA. Effect of incorporation of 2-tert-butylaminoethyl methacrylate on flexural strength of a denture base acrylic resin. J Appl Oral Sci. 2011;19:195-9. PMid:21625732

26. Ottersbach P, Sosna F. Verfahren zur mikrobiziden tiefenimpragnierung porose materialien. Eur Pat Appl EP 1281490, 2003. Labor Fachzeitschrift. 2002; 46: 452-6.

27. McCabe JF, Wilson HJ. The use of differential scanning calorimetry for the evaluation of dental materials. J Oral Rehabil. 1980; 7: 235-43. PMid:6931199. http://dx.doi.org/10.1111/j.1365-2842.1980.tb00440.x

28. Phoenix RD, Mansueto MA, Ackerman NA, Jones RE. Evaluation of mechanical and thermal properties of commonly used denture base resins PMMA. J Prosthodont. 2004; 13: 17-27. PMid:15032892. http://dx.doi.org/10.1111/j.1532-849X.2004.04002.x

29. Paleari AG, Marra J, Pero AC, Rodriguez LS, Ruvollo-Filho AC, Compagnoni MA. Effect of incorporation of 2-tert-butylaminoethyl methacrylate on flexural strength of a denture base acrylic resin. J Appl Oral Sci. 2011;19:195-9. PMid:21625732

30. Palmer DS, Barco MT, Billy EJ. Temperature extremes produced orally by hot and cold liquids. J Prosthet Dent. 1992; 67: 325-7. http://dx.doi.org/10.1016/0022-3913(92)90239-7
588018f07f8c9d0a098b4ecc rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections