Revista de Odontologia da UNESP
Revista de Odontologia da UNESP
Original Article

Interaction between Escherichia coli and Candida albicans in biofilms formed in vitro: analysis of cell viability by the colorimetric assay

Interação entre Escherichia coli e Candida albicans em biofilmes formados in vitro: análise da viabilidade celular por método colorimétrico

Piva, Elisabete; Barbosa, Junia de Oliveira; Rossoni, Rodnei Dennis; Vilela, Simone Furgeri Godinho; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos

Downloads: 1
Views: 822


The interactions between fungi and bacteria are present in nature and has medical and environmental importance. The aim of this study was to evaluate the effects of interaction between ATCC strains Candida albicans and Escherichia coli through the study of biofilms in vitro. For this study were developed biofilms formed by the association between C.albicans and E.coli and monotypic biofilms of C. albicans (control group). To evaluate the effects of E.coli in biofilms of C.albicans, we tested different cell densities of E.coli suspension (107, 106 and 105 cells/mL). After 90 minutes and 24 hours of biofilm formation, cell viability of C. albicans was quantified using the XTT (2 methoxy 4 nitro 5 sulfophenyl 5 phenylamino carbonyl 2H  tetrazolium hydroxide).) colorimetric assay. Data were submitted to ANOVA and Tukey's test, with 5% of significance. After 90 min of Candidal biofilm formation, we observed that cell viability of C. albicans heterotypic biofilms was similar to monotypic biofilm (control group). For the analysis of 24 hours, it was found that cell viability of C.albicans was higher in the monotypic biofilm if compared to heterotypic biofilm, however this difference was not statistically significant. In addition, there were no statistical differences between E. coli different cell densities tested in heterotypic biofilms. According to the methods used, we can conclude that E. coli did not inhibit the biofilm formation by C. albicans.


Candida albicans, Escherichia coli, biofilm


As interações entre fungos e bactérias estão presentes na natureza e têm grande relevância médica e ambiental. O objetivo deste estudo foi avaliar os efeitos de Escherichia coli sobre os biofilmes de Candida albicans formados in vitro. Foram desenvolvidos biofilmes heterotípicos com a associação de C. albicans e E. coli e biofilmes monotípicos de C. albicans (grupo controle). Foi utilizada uma suspensão padronizada de C. albicans contendo 107 células/mL para formação dos biofilmes. Para analisar os efeitos de E. coli no biofilme de C. albicans, foram testadas diferentes densidades celulares da suspensão de E. coli (107, 106 e 105 células/mL). Após 90 minutos e 24 horas da formação do biofilme, a viabilidade celular de C. albicans foi quantificada utilizando-se o ensaio colorimétrico XTT (2 metoxi 4 nitro 5 sulfofenil 5 fenilalanina carbonil 2H tetrazolium hidróxido). Os dados foram submetidos à Análise de Variância ANOVA e ao teste de Tukey, com significância de 5% (p < 0,05). Após 90 minutos da formação do biofilme, observou-se que a viabilidade celular de C. albicans dos biofilmes heterotípicos foi semelhante ao monotípico. A análise de 24 horas demonstrou que a viabilidade celular de C. albicans foi maior no biofilme monotípico em relação aos biofilmes heterotípicos; entretanto, essa diferença não foi estatisticamente significante. Além disso, não foram observadas diferenças estatísticas entre as densidades celulares de E. coli testadas nos biofilmes heterotípicos. Conclui-se que, dentro dos parâmetros utilizados, E. coli não inibiu a formação de biofilme por C. albicans.


Candida albicans, Escherichia coli, biofilme.


1. Peters BM, Jabra-Rizk MA, Scheper MA, Leid JG, Costerton W, Shirtliff ME. Microbial interactions and differencial protein expression in Staphylococcus aureus-Candida albicans dual-species biofilms. FEMS Immunology & Medical Microbiology.2010;59:493-503. PMid:20608978. PMCid:2936118.

2. Marriot MM, Noverr MC. Candida albicans and Staphylococcus aureus form polymicrobial biofilms: effects on antimicrobial resistance. Antimicrob Agents Chemother. 2009;53:3914-22. PMid:19564370. PMCid:2737866.

3. Peleg AY, Hogan DA, Mylonakis E. Medically important bacterial-fungal interactions. Nature Reviews. 2010;8:340-9. PMid:20348933.

4. Lewis, K. Riddle of biofilm resistance. Antimicrob Agents Chemother. 2001; 45:999–1007. PMid:11257008. PMCid:90417. http://dx.doi. org/10.1128/AAC.45.4.999-1007.2001

5. Silva WJ, Seneviratne J, Parahitiyawa N, Rosa EAR, Samaranayake LP, Del Bel Cury AA. Improvement of XTT assay performance for studies involving Candida albicans biofilms. Braz Dent J. 2008;19:364-9.

6. Hogan HA and Kolter R. Pseudomonas-Candida Interactions: An ecological Role for virulence factors. Science. 2002;296:2229-31. PMid:12077418.

7. Tampakakis E, Peleg AY, Mylonakis E. Interaction of Candida albicans with an intestinal pathogen, Salmonella enterica Serovar Typhimurium. Eukaryotic Cell. 2009;8:732-7. PMid:19329669. PMCid:2681611.

8. Thein ZM, Samaranyake Y H and Samaranayke L P Oral. Dietary sugars, serum and the biocide chlorhexidine digluconate modify the population and structural dynamics of mixed Candida albicans and Escherichia coli biofilms. APMIS. 2007; 115: 1241–51. PMid:18092956.

9. Hoehamer CF, Cummings ED, Hilliard GM, Rogers PD. Changes in the Proteome of Candida albicans in response to azole, polyene and echinocandin antifungal agents. Antimicrob Agents Chemother. 2010;54:1655-64. PMid:20145080. PMCid:2863685. http://dx.doi. org/10.1128/AAC.00756-09

10. Chabrier Roselló Y, Foster TH, Mitra S, Haidaris CG. Respiratory deficiency enhances the sensitivity Candida to photodynamic treatment. Photobiol Photochem. 2008; 84:1141-8. PMid:18248505.

11. Teichert MC, Jones JW, Usacheva MN, Biel MA. Treatment of oral candidiasis with methylene blue-mediated photodynamic therapy in an immunodeficient murine model. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;93:155-60. moe.2002.120051

12. Jorge AOC. Princípios de microbiologia e imunologia. São Paulo: Santos Livraria Editora; 2006.

13. Wiles TJ, Kulesus RR, Mulvey MA. Origins and virulence mechanisms of uropathogenic Escherichia coli. Exp Mol Pathol. 2008;85:11-9. PMid:18482721. PMCid:2595135.

14. Nakazato G, Campos TA, Stehling EG, Brocchi M, Silveira WD. Virulence factors of avian pathogenic Escherichia coli. Pesq Vet Bras. 2009;29:479-86.

15. Bakaletz, L. O.: Viral potentiation of bacterial superinfection the respiratory tract. Trends in Microbiol. 1995; 3:110-4. http://dx.doi. org/10.1016/S0966-842X(00)88892-7

16. Stoutenbeek, CP, Van Saene HKF, Miranda DR, Zandstra DF, Binnendijik B. The prevention of superinfection in multiple traumapatients. J. Antimicrob. Chemother. 1984;14:203-11.

17. Wey, S. B., Mori, M., Pfaller, M. A, Wenzel RP. Hospital-acquired interference with the leukocyte function by hemoglobin candidemia: The attributable mortality and excess length of stay. Arch Intern Med. 1988;148: 2642. PMid:3196127. archinte.148.12.2642

18. Nair RG, Samaranayake LP. The effect of oralcommensal bacteria on candidal adhesion to denture acrylic surfaces. An in vitro study. APMIS 1996;104:339–49. PMid:8703439.

19. Sedgley CM, Samaranayake LP, Darvell BW. The influence of incubation conditions on the adherence of oral Enterobacteriaceae to HeLa cells. APMIS 1996;104:583–90. PMid:8920813.

20. Seneviratne CJ, Silva WJ, Jin LJ, Samaranayake YH, Samaranayake LP. Architectural analysis, viability assessment and growth kinetics of Candida albicans and Candida glabrata biofilms. Arch Oral Biol. 2009;54:1052-60. PMid:19712926. archoralbio.2009.08.002

21. Jin Y, Samaranayake LP, Samaranayake Y, Yip HK. Biofilm formation of Candida albicans is variably affected by saliva and dietary sugars. Arch Oral Biol. 2004;49:789-98. PMid:15308423.

22. Wilson M. Lethal photosensitisation of oral bacteria and its potential application in the photodynamic therapy of oral infections. Photochem Photobiol Sci. 2004;3:412-8.

23. Thein ZN, Seneviratne CJ, Samaranayake YH, Samaranayake LP Community lifestyle of Candida in mixed biofilms: a mini review. Mycoses. 2009;52:467–475. PMid:19486299.

24. Shirtliff ME, Peters MB, Jabra-Rizk MA. Cross-kingdom interactions: Candida albicans and bacteria. FEMS Microbiol. 2009;1-8.

25. Thein ZM, Samaranayake YH, Samaranayake LP. Effect of oral bacteria on growth and survival of Candida albicans biofilms. Arch Oral Biol. 2006;51:672–80. PMid:16620775.

26. El-Azizi MA, Starks SE, Khardori N. Interactions of Candida albicans with other Candida spp. and bacteria in the biofilms. J Appl Microbiol. 2004; 96:1067–73. PMid:15078523.

27. Klotz SA, Gauer NK, De Armond R, Sheppard D, Khardori N, Edwards JE Jr, et al. Candida albicans Als proteins mediate aggregation with bacteria and yeasts. Med Mycol. 2007.45:363-70.

28. Kuhn DM, Balkis M, Chandra J, Mukherjee PK, Ghannoum MA. Uses and limitations of the XTT assay in studies of Candida growth and metabolism. J Clin Microbiol. 2003;41:506-8. PMid:12517908. PMCid:149594.

29. Bandara HMHN, Lam OLT, Watt RM, Jin LJ, Samaranayake LP. Bacterial lipopolysaccharides variably modulate in vitro biofilm formation of Candida species. J Med Microbiol. 2010;59:1225-34. PMid:20576747.

30. Klaerner HG, Uknis ME, Acton RD, Dahlberg PS, Carlone-Jambor C, Dunn DL. Candida albicans and Escherichia coli are synergistic pathogens during experimental microbial peritonitis. J Surg Res. 1997;70:161-5. PMid:9245566.
588018f07f8c9d0a098b4ecb rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections