Propriedades antibacterianas de materiais forradores - revisão de literatura
Antibacterial properties of lining materials - a review
Sacramento, P.A.; Papa, A.M.C.; Carvalho, F.G.; Puppin-Rontani, R.M.
Resumo
Os materiais restauradores atuais não permitem um perfeito selamento marginal. Desta forma, microrganismos podem penetrar pela interface dente-restauração causando inflamação pulpar, sensibilidade e cárie secundária. Com o intuito de minimizar a presença de microrganismos, seja por bactérias remanescentes nas cavidades preparadas ou por microinfiltração, é importante que o material forrador de cavidade possua atividade antibacteriana. O objetivo dessa revisão de literatura foi discutir as propriedades e os mecanismos de ação antibacteriana de materiais forradores de cavidade comerciais, como o cimento de óxido de zinco e eugenol, hidróxido de cálcio, ionômero de vidro convencional e alguns sistemas de união, bem como materiais experimentais, como o cimento de ionômero de vidro modificado pela adição de clorexidina. Concluiu-se que os materiais abordados apresentaram resultados positivos no controle bacteriano, porém mais estudos clínicos longitudinais são necessários para determinar o tempo de ação destes materiais.
Palavras-chave
Abstract
The current restorative materials do not allow a perfect marginal sealing. Microorganisms can penetrate in the tooth/restoration gap causing pulp inflammation, postoperative sensitivity and secondary caries. In order to reduce the number of microorganisms, either for remaining bacteria in the cavities or for microleakage, it is important that liners materials have antibacterial activity. The objective of this literature review was to describe the antibacterial properties and mechanisms of commercially available lining materials, i.e. zinc and eugenol oxide cement, calcium hydroxide, conventional and resin modified glass-ionomer cements, and adhesive systems, experimental materials, and glass-ionomer modified by chlorhexidine addition (experimental material). All materials evaluated presented antibacterial effect, however, more longitudinal clinical studies are necessary to determine the duration of their antibacterial effect.
Keywords
References
1. Yap AU, Khor E, Foo SH. Fluoride release and antibacterial properties of new-generation tooth-colored restoratives. Oper Dent. 1999;24:297-95. 2. York AK, Arthur JS. Reasons for placement and replacement of dental restorations in the United States Navy Dental Corps. Oper Dent. 1993;18:203-8. 3. Shenalz G, Ergücü Z, Hiller KA. Effect of dentin on the antibacterial activity of dentin bonding agents. J Endod. 2004;30:352-8. 4. Fairbourn DR, Charbeneau GT, Loesche WJ. Effect of improved Dycal and IRM on bacteria in deep carious lesions. J Am Dent Assoc. 1980;100:547-52. 5. Foley J, Blackwell A. In vivo cariostatic effect of black copper cement on carious dentine. Caries Res. 2003;37:254-60. 6. Weerheijm KL, Kreulen CM, de Soet JJ, Groen HJ, van Amerongen WE. Bacterial counts in carious dentine under restorations: 2 years in vivo effects. Caries Res. 1999;33:130-4. 7. Milosevic A. Calcium hydroxide in restorative dentistry: a review. J Dent. 1991;19:3-13. 8. Imazato S. Antibacterial properties of resin composites and dentin bonding systems: a review. Dent Mater. 2003;19:449-57. 9. Chandler NP, Heling I. Efficacy of three cavity liners in eliminating bacteria from infected dentinal tubules. Quintessence Int. 1995;26:655-9. 10. Streckfuss JL, Smith WN, Brown LR, Campbell MM. Calcification of selected strains of streptococci mutans and streptococci sanguis. J Bacteriol. 1974;120:502-6. 11. Imazato S, Kinomoto Y, Iorumi H, Torü M, Russel RRB, Mclabe JF. Incorporation of antibacterial monomer MDPB in dentin primer. J Dent Res. 1997;76:768-72. 12. Boeckh C, Schumacher E, Podbielski A, Haller B. Antibacterial activity of restorative dental biomaterials in vitro. Caries Res. 2002;36:101-7. 13. Scherer W, Lippman N, Kaim J. Antimicrobial proprieties of glass ionomer cement and others restoratives materials. Oper Dent. 1989;14:77-81. 14. Fisher FJ. The effect of calcium hydroxide/water paste on organisms in carious dentine. BR Dent J. 1972;133:19-21. 15. Vianna ME, Gomes BP, Sena NT, Zaia AA, Ferraz CC, Souza Filho FJ. In vitro evaluation of the susceptibility of endodontic pathogens to calcium hydroxide combined with different vehicles. Braz Dent J. 2005;16:175-80. 16. Siqueira JF Jr, Lopes HP. Mechanisms of antimicrobial activity of calcium hydroxide: a critical review. Int Endod J. 1999;32:361-9. 17. Kontakiotis E, Nakou M, Georgopoulou M. In vitro study of the indirect action of calcium hydroxide on the anaerobic flora of the root canal. Int Endod J. 1995;28:285-9. 18. Safavi KE, Dowden WE, Introcaso JH, Langeland K. A comparison of antimicrobial effects of calcium hydroxide and iodine-potassium iodide. J Endod. 1985;11:454-6 19. Anusavice KJ. Phillip’s science of dental materials. 11th ed. Philadelphia: Saunders; 2003. 20. Seppä L, Torppa-Saarinen E, Luoma H. Effect of different glass ionomers on the acid production and electrolyte metabolism of Streptococcus mutans Ingbritt. Caries Res. 1992;26:434-8. 21. Ribeiro J, Ericson D. In vitro antibacterial effect of chlorhexidine added to glass-ionomer cements. Scand J Dent Res. 1991;99:533-40. 22. Meiers JC, Miller GA. Antibacterial activity of dentin bonding systems, resin-modified glass ionomers, and polyacid-modified composite resins. Oper Dent. 1996;21:257-64. 23. van Amerongen WE. Dental caries under glass ionomer restoration. J Public Health Dent. 1996;56:150-4. 24. DeSchepper EJ, White RR, von der Lerh W. Antibacterial effects of glass ionomer. Am J Dent. 1989;2:51-6. 25. van Loveren C, Lammens AJ, Ten Cate JM. Development and establishment of fluoride-resistant strains of Streptococcus mutans in rats. Caries Res. 1990;24:337-43. 26. Wesenberg G, Hals E. The in vitro effect of a glass ionomer cement on dentine and enamel walls. An electron probe and microradiographic study. J Oral Rehabil. 1980;7:35-42. 27. Forss H. Release of fluoride and others elements from light cured glass ionomers in neutral and acidic condiction. J Dent Res. 1993;72:1257-62. 28. Kantovitz KR, Pascon FM, Correr GM, Borges AFS, Uchoa MNS, Puppin-Rontani RM. Inhibition of mineral loss at the enamel/sealant interface of fissures sealed with fluoride- and non-fluoride containing dental materials in vitro. Acta Odontol Scand. 2006;64:376-83. 29. Oppermann RV, Johansen JR. Effect of fluoride and non-fluoride salts of cooper, silver and tin on the acidogenicitY of dental plaque in vivo. Scand J Dent Res. 1980;88:476-80. 30. Svanberg M, Mjör IA, Ørstavik D. Mutans streptococci in plaque from margins of amalgam, composite and glass ionomer restorations. J Dent Res. 1990;69:861-4. 31. Luoma AR, Raisanen J. Alternations by Mg and F of fermentative dissolution of F – varnished enamel by Streptococci layer measured by micro hardness tester and proton probe microanalysis. Caries Res. 1984;18:111-9. 32. Bender GR, Sutton SV, Marquis RE. Acid tolerance, proton permeabilities, and membrane ATPases of oral streptococci. Infect Immun. 1986;53:331-8. 33. Luoma H, Luoma A-R, Seppä L. Exchange of fluoride between bovine enamel and the surface related cells of the oral bacterium Streptococcus mutans. Arch Oral Biol. 1984;29:343-8. 34. Othman S, Haugen E, Gjermo P. The effect of chlorhexidine supplementation in a periodontal dressing. Acta Odontol Scand. 1989;47:361-6. 35. Jedrychowski JR, Caputo AA, Kerper S. Antibacterial and mechanical properties of restorative materials combined with chlorhexidines. J Oral Rehabil. 1983;10:373-81. 36. Frencken JE, Imazato S, Toi C, Mulder J, Mickenautsch S, Takahashi Y, Ebisu S. Antibacterial effect of chlorhexidine- containing glass ionomer cement in vivo: a pilot study. Caries Res. 2007;41:102-7.