Influência do desajuste marginal na força de destorque de parafusos protéticos
Influence of marginal misfit on the loosening torque of prosthetic screws
Cardoso, L.; Daroz, L.G.D.; Fragoso, W.S.; Consani, R.L.X.; Mesquita, M.F.; Henriques, G.E.P.
Rev. odontol. UNESP, vol.36, n4, p.371-377, 2007
Resumo
A manutenção da estabilidade da conexão parafusada é fundamental para sucesso a longo prazo das reabilitações implanto-retidas. Contudo, em estruturas protéticas envolvendo múltiplos implantes, a presença de desajustes marginais pode afetar negativamente esta estabilidade. O objetivo deste estudo foi avaliar a força imediata necessária para o destorque de parafusos protéticos em estruturas implanto-retidas com diferentes níveis de desajuste marginal. A partir de matriz metálica contendo 3 réplicas de pilares cônicos dispostos 10 mm de centro a centro, foram confeccionadas 10 estruturas fundidas em monobloco utilizando-se titânio comercialmente puro. Para cada estrutura, foi quantificada a força imediata necessária para o destorque dos parafusos protéticos utilizando-se torquímetro digital de precisão. Ainda, através do teste do parafuso único e visualização direta em microscópio de medição (120x), foi calculado o valor médio de desajuste marginal. A força de destorque imediata e os desajustes marginais foram verificados em duas situações experimentais distintas: Situação (MM) – com as peças parafusadas diretamente sobre a matriz metálica; e Situação (MI) – com as peças parafusadas sobre um modelo index simulando desajuste mínimo. O valor médio de desajuste marginal para a situação MM foi de 188 μm (DP ± 61,5) e para a MI, de 66 μm (DP±18,5). A média de força de destorque dos parafusos protéticos para a situação MM (5,81 ± 0,77 N.cm) foi significativamente inferior à situação MI (7,42 ± 0,93 N.cm) (p < 0,05). O maior nível do desajuste marginal reduziu significantemente a força imediata necessária para o destorque dos parafusos protéticos.
Palavras-chave
Implantes dentários, prótese dentária, torque, passividade
Abstract
The maintenance of the screw-joint stability is crucial for the long-term success in implant-supported rehabilitations. However, in multi-unit implant frameworks, the occurrence of marginal misfits could affect negatively this stability. The purpose of this study was to evaluate the loosening torque of prosthetic screws in implant-retained frameworks with different levels of marginal misfit. A metallic master cast containing 3 conical abutment analogs disposed 10 mm center to center was used to manufacture 10 one-piece casting frameworks made from cast titanium. Using a digital torque meter, it was quantified the immediate loosening torque necessary to loose the prosthetic screws for each framework. Also, using the one-screw test protocol associated with direct visualization by means of a light microscope (x120), the marginal misfit for each structure was calculated. Both immediate loosening torque and marginal misfit were evaluated under two different conditions: (MM) with the frameworks tightened over the metallic master cast; and (MI) with the frameworks tightened over an index cast that simulated a minimum misfit condition. The mean marginal misfit value for situation (MM) was 188 μm (DP ± 61.5) and for (MI) 66 μm (DP ± 18.5). The immediate loosening torque value necessary to loose the prosthetic screws was significantly lower for the situation MM (5.78 ± 1.03 N.cm) than the situation MI (7.06 ± 0,62 N.cm) (P < 0.01). For higher marginal misfit values, a lower loosening torque force is necessary to loose the prosthetic screws in implant-retained frameworks.
Keywords
Dental implants, dental prosthesis, torque, passivity
References
1. Cantwell A, Hobkirk JA. Preload loss in gold prosthesis-retaining screws as a function of time. Int J Oral Maxillofac Implants. 2004;19:124-32.
2. Jorneus L, Jemt T, Carlsson L. Loads and designs of screw joints for single crowns supported by osseointegrated implants. Int J Oral Maxillofac Implants. 1992;7:353-9.
3. Patterson EA, Johns RB. Theoretical analysis of the fatigue life of fixture screws in osseointegrated dental implants. Int J Oral Maxillofac Implants. 1992;7:26‑33.
4. Bickford JH. An Introdution to the design an behaviour of bolted joints. New York: Marcel Decker; 1981.
5. Haack JE, Sakaguchi RL, Sun T, Coffey JP. Elongation and preload stress in dental implant abutment screws. Int J Oral Maxillofac Implants. 1995;10:529-36.
6. Skalak R. Biomechanical considerations in osseointegrated prostheses. J Prosthet Dent. 1983;49:843-8.
7. Weinberg LA. The biomechanics of force distribution in implant-supported prostheses. Int J Oral Maxillofac Implants. 1993;8:19-31.
8. Kunavisarut C, Lang LA, Stoner BR, Felton DA. Finite element analysis on dental implant-supported prostheses without passive fit. J Prosthodont. 2002;11:30-40.
9. Longoni S, Sartori M, Davide R. A simplified method to reduce prosthetic misfit for a screw-retained, implant-supported complete denture using a luting technique and laser welding. J Prosthet Dent. 2004;91:595-8.
10. Adell R, Lekholm U, Rockler B, Branemark PI. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg. 1981;10:387-416.
11. Naert I, Quirynen M, van Steenberghe D, Darius P. A study of 589 consecutive implants supporting complete fixed prostheses. Part II: prosthetic aspects. J Prosthet Dent. 1992;68:949-56.
12. Bauman GR, Mills M, Rapley JW, Hallmon WH. Clinical parameters of evaluation during implant maintenance. Int J Oral Maxillofac Implants. 1992;7:220-7.
13. Carlson B, Carlsson GE. Prosthodontic complications in osseointegrated dental implant treatment. Int J Oral Maxillofac Implants. 1994;9:90-4.
14. Zarb GA, Schmitt A. Implant prosthodontic treatment options for the edentulous patient. J Oral Rehabil. 1995;22:661-71.
15. Jemt T. Failures and complications in 391 consecutively inserted fixed prostheses supported by Branemark implants in edentulous jaws: a study of treatment from the time of prosthesis placement to the first annual checkup. Int J Oral Maxillofac Implants. 1991;6:270-6.
16. Taylor TD. Research directions in implant prosthodontics. Int J Prosthodont. 2000;13:270-1.
17. Sahin S, Cehreli MC. The significance of passive framework fit in implant prosthodontics: current status. Implant Dent. 2001;10:85-92.
18. Andersson M, Carlsson L, Persson M, Bergman B. Accuracy of machine milling and spark erosion with a CAD/CAM system. J Prosthet Dent. 1996;76:187-93.
19. Kan JY, Rungcharassaeng K, Bohsali K, Goodacre CJ, Lang BR. Clinical methods for evaluating implant framework fit. J Prosthet Dent. 1999;81:7-13.
20. Jemt T, Linden B, Lekholm U. Failures and complications in 127 consecutively placed fixed partial prostheses supported by Branemark implants: from prosthetic treatment to first annualcheckup. Int J Oral Maxillofac Implants. 1992;7:40-4.
21. Carr AB, Gerard DA, Larsen PE. The response of bone in primates around unloaded dental implants supporting prostheses with different levels of fit. J Prosthet Dent. 1996;76:500-9.
22. Jemt T, Book K. Prosthesis misfit and marginal bone loss in edentulous implant patients. Int J Oral Maxillofac Implants. 1996;11:620-5.
23. Schwarz MS. Mechanical complications of dental implants. Clin Oral Implants Res. 2000;11(Suppl 1):156-8.
24. Adell R, Eriksson B, Lekholm U, Branemark PI, Jemt T. Long-term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws. Int J Oral Maxillofac Implants. 1990;5:347-59.
25. Johansson G, Palmqvist S. Complications, supplementary treatment, and maintenance in edentulous arches with implant-supported fixed prostheses. Int J Prosthodont. 1990;3:89-92.
26. Waskewicz GA, Ostrowski JS, Parks VJ. Photoelastic analysis of stress distribution transmitted from a fixed prosthesis attached to osseointegrated implants. Int J Oral Maxillofac Implants.1994;9:405-11.