Propriedades mecânicas de implantes dentários submetidos à ação de íons fluoretos
Mechanical properties of dental implants submitted to fluoride ions action
Sartori, R.; Corrêa, C.B.; Fernandes Filho, R.B.; Marcantonio Jr., E.; Vaz, L.G.
Rev. odontol. UNESP, vol.36, n4, p.317-322, 2007
Resumo
O objetivo deste estudo foi avaliar a dureza, a resistência à fadiga e a fractografia do conjunto implante-componente de titânio comercialmente puro (Ti c.p.) após ser submetido à corrosão por íons fluoretos. Espécimes de duas marcas comerciais, uma nacional (Neodent) e outra importada (3i Implant Innovations), foram analisados; cada uma com dois grupos de 7. Os conjuntos do grupo teste foram imersos em solução de fluoreto de sódio a 1500 ppm (pH 5,3) por 184 horas, simulando 5 anos de exposição ao flúor, e os do grupo controle, em água destilada pelo mesmo tempo. A dureza dos implantes foi avaliada antes e após a exposição aos íons fluoretos, demonstrando redução estatisticamente significante. Todos os conjuntos suportaram a ciclagem mecânica (105 ciclos, 15 Hz, 150 N), realizada após a imersão nas soluções. A fractografia, por meio de microscopia eletrônica de varredura, não relevou presença de trincas ou fendas nos implantes. Concluiu-se que o fluoreto de sódio a 1500 ppm influenciou apenas na superfície dos biomateriais estudados, sem comprometer a resistência mecânica do conjunto implante-componente.
Palavras-chave
Implantes dentários, titânio, corrosão, teste de dureza, fadiga
Abstract
The aim of the study was to assess the hardness, the fatigue resistance and the fractography of commercially pure titanium (c.p. Ti) implant-abutment set submitted to 3 corrosion by fluoride ions. Fourteen samples of two trademarks, a nacional one (Neodent) and an internacional one (3i Implant Innovations), divided into two groups with 7 samples each, have been analyzed. The sets of test group were submerged in a 1500 ppm sodium fluoride solution (pH 5.3) for 184 hours, simulating 5 years of fluoride contact, and the control groups sets in distilled water for the same time. The implants hardness was assessed before and after the contact to fluoride ions, showing reduction statically different. All groups supported the mechanical cycling (105 cycles, 15 Hz, 150 N) after solution immersion. The fractography, by scanning electronic microscopy, didn’t show the presence of cracks and gaps in the implants. In conclusion, the sodium fluoride at 1500 ppm influenced the evaluated biomaterials surface, without impairment of mechanical properties of de implant-abutment set.
Keywords
Dental implants, titanium, corrosion, hardness, fatigue
References
1. Aziz-kerrzo M, Conroy RG, Fenelon AM, Farrell ST, Breslin CB. Electrochemical studies on the stability and corrosion resistence of titanium-based implant materials. Biomaterials. 2001;22:1531-9.
2. Barjj A. EDS Titanium. In: James WJ, Straumanis ME. Encyclopedia of electrochemistry of the elements. New York: Marcel Dekker; 1976. v. 5, p. 305-95.
3. Cibirka RM, Nelson SK, Lang BR, Rueggeberg FA. Examination of the implantabutment interface after fatigue testing. J Prosthet Dent. 2001;85:268-75.
4. Donachie Jr MJ, editor. Introduction. In: Donachie Jr MJ. Titanium: a technical guide. Metals Park: ASM international; 1987. p. 9-19.
5. Fathi MH, Salehi M, Saatchi A, Mortazavi V, Moosavi SB. In vitro corrosion behavior of bioceramic, metallic and bioceramic-metallic coated stainless steel dental implants. Dent Mater. 2003;19:188-98.
6. Gibney K. Fracture of the body of an implant and its management - a case history. Br Dent J. 2004;197:615-7.
7. Hoyer SA, Stanford CM, Buranadham S, Fridrich T, Wagner J, Gratton D. Dynamic fatigue properties of the dental implant-abutment interface: joint opening in widediameter versus standard-diameter hex-type implants. J Prosthet Dent. 2001;85:599-607.
8. Huang HH. Effects of fluoride concentration and elastic tensile strain on the corrosion resistence of commercially pure titanium. Biomaterials. 2002;23:59-63.
9. Kaneko K, Yokoyama K, Moriyama K, Asaoka K, Sakai J, Nagumo M. Delayed fracture of beta titanium orthodontic wire in fluoride aqueous solutions. Biomaterials. 2003;24:2113-20.
10. Kasemo B, Lausmaa J. Biomaterial and implant surfaces: a surface science approach. Int J Maxillofac Implants. 1988;3:247-59.
11. Khraisat A, Stegaroiu R, Nomura S, Miyakawa O. Fatigue resistence of two implant/abutment joint designs. J Prosthet Dent. 2002;88:604-10.
12. Koike M, Fujii H. The corrosion resistence of pure titanium in organic acids. Biomaterials. 2001;22:2931-6.
13. Lindquist LW, Carlsson GE. Long-term effects on chewing with mandibular fixed prostheses on osseointegrated implants. Acta Odontol Scand. 1985;43:39-45.
14. Massaro C, Rotolo P, De Riccardis F, Milella E, Napoli A, Wieland M, et al. Comparative investigation of the surface properties of commercial titanium dental implants. Part I: chemical composition. J Mater Sci Mater Med. 2002;13:535-48.
15. Mericske-Stern R, Zarb GA. In vivo measurements of some functional aspects with mandibular fixed prostheses supported by implants. Clin Oral Implants Res. 1996;7:153-61.
16. Merz BR, Hunenbart S, Belser UC. Mechanics of the implant-abutment connection: an 8 degree taper compared to a butt joint connection. Int J Oral Maxillofac Implants. 2000;15:519-26.
17. Morgan MJ, James DF, Pilliar RM. Fractures of the fixture component of an osseointegrated implant. Int J Oral Maxillofac Implants. 1993;8:409-14.
18. Nergiz I, Schmage P, Shahin R. Removal of a fractured implant abutment screw: a clinical report. J Prosthet Dent. 2004;91:513-7.
19. Norton MR. An in vitro evaluation of the strength of a 1-piece and 2-piece conical abutment joint in implant design. Clin Oral Implants Res. 2000;11:458-64.
20. O’brien WJ. Materials used in implantology. In: O’brien WJ. Dental materials and their selection. 2nd ed. Chicago: Quintessence Publishing; 1997. p. 320-4.