Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/588017e07f8c9d0a098b4956
Revista de Odontologia da UNESP
Original Article

Influence of Light-curing Mode on the Sealing of Resin Composite Restorationsv

Influência do protocolo de fotoativação no selamento de restaurações com compósitos

Santos, G.O.; Poskus, L.T.; Guimarães, J.G.A.; Silva, E.M.

Downloads: 2
Views: 1145

Abstract

This study investigated the effect of light-curing modes on cervical sealing of resin composite restorations. Sixty cavities with the occlusal margins in enamel and the gingival margins in dentin, prepared on the labial and lingual surfaces of human premolars were treated with Single Bond adhesive system and restored using a bulk technique with three resin composites (A110, P60 and Point 4). For each composite, two groups of 10 cavities were created according to the two light-curing modes: Standard (S)-500 mW/cm2 / 40 seconds and Soft-start (SS) - 250 mW/cm2 / 40 seconds + 500 mW/cm2 / 20 seconds. The specimens were submitted to thermocycling prior to immersion in 2% neutral solution of methylene blue for 24 hours. The teeth were sectioned and the degree of dye penetration was scored on a 0-3 ordinal scale. The data were analyzed by Kruskal-Wallis and Mann-Whitney tests (α = 0.05). No significant difference in the microleakage scores was observed among the groups polymerized with the two light-curing modes. The microleakage was greater in dentin margins than in enamel margins (p < 0.01). These results suggest that soft-start light-curing mode did not have any influence on resin composite restoration sealing.

Keywords

Microleakage, resin composites, light-curing mode

Resumo

O propósito deste estudo foi avaliar a influência do protocolo de fotoativação no selamento de restaurações classe V com compósitos. Sessenta cavidades com margem oclusal em esmalte e margem apical em dentina, preparadas nas superfícies vestibular e lingual de prémolares humanos, foram hibridizadas com o sistema adesivo Single Bond e restauradas com três compósitos (A110, P60 e Point 4). Para cada compósito, foram produzidos dois grupos de acordo com os protocolos de fotoativação (n = 10): Convencional-500 mW/cm2/40 segundos e Softstart-250 mW/cm2/40 segundos + 500 mW/cm2/20 segundos. Após acabamento/polimento das restaurações e armazenagem durante 7 dias em água destilada a 37 °C, os dentes foram submetidos à termociclagem. Os espécimes foram impermeabilizados com esmalte de unha e imersos em solução neutra de azul de metileno a 2% por 24 horas. Os dentes foram seccionados e o grau de penetração do corante foi avaliado em uma escala ordinal de 0-3. Os dados foram submetidos aos testes de Kruskal-Wallis e Mann-Whitney (α = 0,05). Não houve diferença estatística entre os grupos ativados com os dois protocolos de fotoativação. A microinfiltração foi maior nas margens em dentina do que nas margens em esmalte (p < 0,01). Esses achados sugerem que o protocolo de fotoativação soft-start não apresentou influência no selamento de cavidades restauradas com compósitos fotopolimerizáveis.

Palavras-chave

Microinfiltração, resinas compostas, protocolo de fotoativação

References



1. Davidson CL, de Gee AJ, Feilzer A. The competition between the composite-dentin bond strength and the polymerization contraction stress. J Dent Res. 1984; 63:1396-9.

2. Venhoven BA, de Gee AJ, Davidson CL. Polymerization contraction and conversion of light-curing BisGMA-based methacrylate resins. Biomaterials. 1993;14:871‑5.

3. Peutzfeldt A. Resin composites in dentistry: the monomer systems. Eur J Oral Sci. 1997;105:97-116.

4. Eick JD, Welch FH. Polymerization shrinkage of posterior composite resins and its possible influence on postoperative sensitivity. Quintessence Int. 1986;17:103‑11.

5. Krejci I, Lutz F. Marginal adaptation of Class V restorations using different restorative techniques. J Dent. 1991;19:24-32.

6. Condon JR, Ferracane JL. Reduction of composite contraction stress through non-bonded microfiller particles. Dent Mater. 1998;14:256-60.

7. Verluis A, Tantbirojn D, Douglas WH. Do dental composites always shrink toward the light? J Dent Res. 1998;77:1435-45.

8. Bouschlicher MR, Rueggeberg FA, Boyer DB. Effect of stepped light intensity on polymerization force and conversion in a photoactivated composite. J Esthet Dent. 2000;12:23-32.

9. Yoshikawa T, Burrow MF, Tagami J. A light curing method for improving marginal sealing and cavity wall adaptation of resin composite restorations. Dent Mater. 2001;17:359-66.

10. Jain P, Pershing A. Depth of cure and microleakage with high-intensity and ramped resin-based composite curing lights. J Am Dent Assoc. 2003;134:1215-23.

11. Feilzer AJ, Dooren LH, de Gee AJ, Davidson CL. Influence of light intensity on polymerization shrinkage and integrity of the restoration-cavity interface. Eur J Oral Sci. 1995;103:322-6.

12. Unterbrink GL, Muessner R. Influence of light intensity on two restorative systems. J Dent. 1995;23:183-9.

13. Rueggeberg FA, Caughman WF, Curtis JW Jr, Davis HC. Factors affecting cure at depths within light-activated resin composites. Am J Dent. 1993;6:91-5.

14. Uno S, Asmussen E. Marginal adaptation of a restorative resin polymerized at a reduced rate. Scand J Dent Res. 1991;99:440-4.

15. Yap AU, Seneviratne C. Influence of light energy density on effectiveness of composite cure. Oper Dent. 2001;26:460-6.

16. Halvorson RH, Erickson RL, Davidson CL. Energy dependent polymerization of resin-based composite. Dent Mater. 2002;18:463-9.

17. Vandewalle KS, Ferracane JL, Hilton TJ, Erickson RL, Sakaguchi RL. Effect of energy density on properties and marginal integrity of posterior resin composite restorations. Dent Mater. 2004;20:96-106.

18. Mehl A, Hickel R, Kunzelmann KH. Physical properties and gap formation of light-cured composites with and without ‘softstart-polymerization’. J Dent. 1997;25:321‑30.

19. Koran P, Kurschner R. Effect of sequential versus continuous irradiation of a light-cured resin composite on shrinkage, viscosity, adhesion and degree of polymerization. Am J Dent. 1998;11:17-22.

20. Sakaguchi RL, Berge HX. Reduced light energy density decreases post-gel contraction while maintaining degree of conversion in composites. J Dent. 1998;26:695-700.

21. Muangmingsuk A, Senawongse P, Yudhasaraprasithi S. Influence of different softstart polymerization techniques on marginal adaptation of Class V restorations. Am J Dent. 2003;16:117-9.

22. Barros GK, Aguiar FH, Santos AJ, Lovadino JR. Effect of different intensity light curing modes on microleakage of two resin composite restorations. Oper Dent. 2003;28:642-6.

23. Swift EJ Jr, Triolo PT Jr, Barkmeier WW, Bird JL, Bounds SJ. Effect of low-viscosity resins on the performance of dental adhesives. Am J Dent. 1996;9:100-4.

24. Davidson CL, de Gee AJ. Relaxation of polymerization contraction stresses by flow in dental composites. J Dent Res. 1984;63:146-8.

25. Lim BS, Ferracane JL, Sakagushi RL, Condon JR. Reduction of polymerization contraction stress for dental composites by two-step light-activation. Dent Mater. 2002;18:436-44.

26. Yap AU, Soh MS, Siow KS. Effectiveness of composite cure with pulse activation and soft-start polymerization. Oper Dent. 2002;27:44-9.

27. Kloosterboer JG, Lijten GFCM. Photopolymers exhibiting a large difference between glass transition and curing temperatures. Polymer. 1990;31:95-101.

28. Kubo S, Yokota H, Yokota H, Hayashi Y. The effect of light-curing modes on the microleakage of cervical resin composite restorations. J Dent. 2004;32:247-54.

29. Pashley DH, Carvalho RM. Dentine permeability and dentine adhesion. J Dent. 1997;25:355-72.

30. Braem M, Finger W, Van Doren VE, Lambrechts P, Vanherle G. Mechanical properties and filler fraction of dental composites. Dent Mater. 1989;5:346-8.
588017e07f8c9d0a098b4956 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections