Revista de Odontologia da UNESP
https://revodontolunesp.com.br/article/588017df7f8c9d0a098b4954
Revista de Odontologia da UNESP
Original Article

Componentes das imunidades inata e adaptativa presentes na saliva humana

Components of the innate and adaptive immunity present in human saliva

Mizobe-Ono, L.; Araújo, J.L.P.; Santos, M.C.

Downloads: 45
Views: 3507

Resumo

A cavidade bucal é a porta principal de entrada de patógenos para o corpo humano. No entanto, devido a um complexo mecanismo de defesa, os inúmeros agentes infecciosos que colonizam ou penetram a cavidade bucal não ocasionam patologias. A saliva, além de desempenhar as funções de hidratação e lubrificação dos tecidos da cavidade bucal, atua diretamente na regulação da microbiota e na proteção contra microrganismos. A função de proteção é desempenhada por componentes celulares e moleculares pertencentes às imunidades inata e adaptativa que atuam sobre bactérias, fungos e vírus. As proteínas da imunidade inata constituem a primeira linha de defesa do organismo, e as imunoglobulinas, secretadas pelos linfócitos B1 da imunidade inata e pelos linfócitos B da imunidade adaptativa, potencializam esse mecanismo protetor. Nesta revisão foram destacados os principais componentes celulares e moleculares pertencentes ao Sistema Imune Inato e ao Sistema Imune Adaptativo que atuam na proteção e na manutenção da homeostasia da cavidade bucal.

Palavras-chave

Imunidade inata, imunidade adaptativa, proteínas salivares, saliva, defesa

Abstract

The oral cavity is the main pathway through which pathogens enter the human body. However, as a result of a complex defense mechanism, the numerous infectious agents that enter and colonize the oral cavity do not cause pathologies. Besides moisturizing and lubricating the oral cavity tissues, the saliva acts directly in the regulation of the microbiota and in the protection against microorganisms. The protective function is performed by the cellular and molecular components of the innate and adaptive immunity, which act against bacteria, fungi and viruses. The proteins of the innate immunity are the organism first line of defense and the immunoglobulin, which are secreted by the B1 lymphocytes of the innate immunity and B lymphocytes of the adaptive immunity, boost the protective mechanism. In this review we emphasize the main cellular and molecular components that belong to the Innate Immune System and to the Adaptive Immune System, which act in the protection and the maintenance of the oral cavity homeostasis.

Keywords

Innate immunity, adaptive immunity, salivary proteins, saliva, defense

References



1. Almståhl A, Wikström M, Groenink J. Lactoferrin, amylase and mucin MUC5B and their relation to the oral microflora in hyposalivation of different origins. Oral Microbiol Immunol. 2001;16:345-52.

2. Almståhl A, Wikström M. Electrolytes in stimulated whole saliva in individuals with hyposalivation of different origins. Arch Oral Biol. 2003;48:337-44.

3. Aps JKM, Van den Maagdenberg K, Delanghe JR, Martens LC. Flow cytometry as a new method to quantify the cellular content of human saliva and its relation to gingivitis. Clin Chim Acta. 2002;321:35-41.

4. Basset C, Holton J, O’Mahony R, Roitt I. Innate immunity and pathogen-host interactions. Vaccine. 2003;21(Suppl 2):12-23.

5. Born WK, Reardon CL, O’Brien R L. The function of γ:δ T cells in innate immunity. Curr Opin Immunol. 2006;18:31–8.

6. Beutler B, Jiang Z, Georgel P, Crozat K, Croker B, Rutschmann S, et al. Genetic analysis of host resistance: toll-like receptor signaling and immunity at large.Annu Rev Immunol. 2006;24:353–89.

7. Biesbrock AR, Bobek LA, Levine MJ. MUC7 gene expression and genetic polymorphism. Glycoconj J. 1997;14:415-22.

8. Boches SK, Paster BJ, Dewhirst, FE. Development of a human oral microbe identification microarray [abstract 2263]. J Dent Res. 2004;83(Special Issue) [cited 2006 Oct 10]. Available from: http//www.dentalresearch.org

9. Brown LR, Dreizen S, Daly TE, Drane JB, Handler S, Riggan LJ, et al. Interrelations of oral microorganisms, immunoglobulins, and dental caries following radiotherapy. J Dent Res. 1978;57:882-93.

10. Castagnola M, Congiu D, Denotti G, Di Nunzio A, Fadda MB, Melis S, et al. Determination of the human salivary peptides histatins 1, 3, 5 and statherin by high-performance liquid chromatography and by diode-array detection. J Chromatogr B Biomed Sci Appl. 2001;751:153–60.

11. Childers NK, Greenleaf C, Li F, Dasanayake AP, Powell WD, Michalek SM. Effects of age on immunoglobulin A subclass distribution in human parotid saliva. Oral Microbiol Immunol. 2003;18:298-301.

12. Dale ba, Krisanaprakornkit s. Defensin antimicrobial peptides in the oral cavity. J Oral Pathol Med. 2001;30:321-7.

13. Devine DA. Antimicrobial peptides in defence of the oral and respiratory tracts. Mol Immunol. 2003;40:431-43.

14. Dunsche A, Açil Y, Dommisch H, Siebert R, Schröder JM, Jepsen S. The novel human beta-defensin-3 is widely expressed in oral tissues. Eur J Oral Sci. 2002;109:121‑4.

15. Farnaud S, Evans RW. Lactoferrin – a multifunctional protein with antimicrobial properties. Mol Immunol. 2003;40:395-405.

16. Gilbert M, Stayton PS. Expression and characterization of human salivary statherin from Escherichia coli using two different fusion constructs. Protein Expr Purif. 1999;16:243–50.

17. Gleeson M, Pyne DB. Special feature for the Olympics: effects of exercise on the immune system: exercise effects on mucosal immunity. Immunol Cell Biol. 2000;78:536-44.

18. Goebel C, Mackay LG, Vickers ER, Mather LE. Determination of defensin HNP-1, HNP-2, and HNP-3 in human saliva by using LC/MS. Peptides. 2000; 21:757-65.

19. Grenier D, Mayrand D. Inactivation of tissue inhibitor of metalloproteinases-1 (TIMP-1) by Porphyromonas gingivalis. FEMS Microbiol Lett. 2001;203:161-4.

20. Groenink J, Walgreen-Weterings E, Van’t Hof W, Veerman EC, Nieuw Amerongen AV. Cationic amphipatic peptides, derived from bovine and human lactoferrins, with antimicrobial activity against oral pathogens. FEMS Microbiol Lett. 1999;179:217-22.

21. Gururaja TL, Levine JH, Tran DT, Naganagowda GA, Ramalingam K, Ramasubbu N, et al. Candidacidal activity prompted by N-terminus histatin-like domain of human salivary mucin (MUC7). Biochim Biophys Acta. 1999;1431: 107-19.

22. Hayakawa H, Yamashita K, Ohwaki K, Sawa M, Noguchi T, Iwata K, et al. Collagenase activity and tissue inhibitor of metalloproteinases-1 (TIMP-1) content in human whole saliva from clinically healthy and periodontally diseased subjects. J Periodontal Res. 1994;29:305-8.

23. Holand MCH, Lambris JD. The complement system in teleosts. Fish & Shellfish Immunology. 2002;12:399‑420.

24. Huang C-M. Comparative proteomic analysis of human whole saliva. Arch Oral Biol. 2004;49:951-62.

25. Janeway CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197-216.

26. Lamm ME. Interactions of antigens and antibodies at mucosal surfaces. Annu Rev Microbiol. 1997;51:311‑40.

27. Litman GW, Anderson MK, Rast JP. Evolution of antigen binding receptors. Annu Rev Immunol. 1999;17:109‑47.

28. Liu C-M, Tung K-H, Chang T-H, Chien C-C, Yen M-H. Analysis of secretory immunoglobulin A in human saliva by laser-induced fluorescence capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci. 2003;791:315-21.

29. Lugardon K, Raffner R, Goumon Y, Corti A, Delmas A, Bulet P, et al. Antibacterial and antifungal activities of vasostatin-1, the N-terminal fragment of chromogranin A. J Biol Chem. 2000;275:10745-53.

30. Mandel ID. The role of saliva in maintaining oral homeostasis. J Am Dent Assoc. 1989;119:298-304.

31. Mizukawa N, Sugiyama K, Ueno T, Mishima K, Takagi S, Sugahara T. Levels of human defensin-1, an antimicrobial peptide, in saliva of pacients with oral inflammation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999; 87:539-43.

32. Monteiro RC, van de Winkel JG. IgA Fc receptors. Annu Rev Immunol. 2003;21:177-204.

33. Murakami M, Ohtake T, Dorschner RA, Gallo rl. Cathelicidin antimicrobial peptides are expressed in salivary glands and saliva. J Dent Res. 2002;81:845-50.

34. Nakane H, Asami O, Yamada Y, Ohira H. Effect of negative air íons on computer operation, anxiety and salivary chromogranin A-like immunoreactivity. Int J Psychophysiol. 2002;46:85-9.

35. Nieuw Amerogen AV, Veerman ECI. Salivary glands and saliva – number 2. Saliva – the defender of the oral cavity. Oral Diseases. 2002;8:12-22.

36. Nieuw Amerogen AV, Bolscher JGM, Veerman ECI. Salivary proteins: protective and diagnostic value in cariology? Caries Res. 2004;38:247-53.

37. Nikawa H, Samaranayake lp, Tenovuo J, Pang km, Hamada t. The fungicidal effect of human lactoferrin on Candida albicans and Candida krusei. Arch Oral Biol. 1993;38:1057-63.

38. Ozmeric N. Review: advances in periodontal disease markers. Clin Chim Acta. 2004;343:1-16.

39. Pasare C, Medzhitov R. Toll-like receptors: linking innate and adaptive immunity. Microbes Infect. 2004;6:1382‑7.

40. Pedersen AM, Bardow A, Beier Jensen S, Nauntofte B. Salivary glands and saliva – number 5. Saliva and gastrointestinal functions of taste, mastication, swallowing and digestion. Oral Dis. 2002;8:117-29.

41. Petruzzelli R, Clementi me, Marini S, Coletta M, Di- Stasio E, Giardina b, et al. Respiratory inhibition of isolated mammalian mitochondria by salivary antifungal peptide histatin-5. Biochem Biophys Res Commun. 2003;311:1034-40.

42. Raj PA, Dentino AR. Current status of defensins and their role in innate and adaptive immunity. FEMS Microbiol Lett. 2002;206:9-18.

43. Rantonen P. Salivary flow and composition in healthy and diseased adults [Academic Dissertation]. Finland: Faculty of Medicine, University of Helsinki; 2003.

44. Sakamoto M, Umeda M, Benno Y. Molecular analysis of human oral microbiota. J Periodontal Res. 2005;40:277‑85.

45. Samaranayake YH, Samaranayake LP, Pow EHN, Beena VT, Yeung KWS. Antifungal effects of lysozyme and lactoferrin against genetically similar, sequential Candida albicans isolates from a human immunodeficiency virus- infected southern Chinese cohort. J Clin Microbiol. 2001;39:3296–302.

46. Samuelsen Ø, Haukland HH, Ulvatne H, Vorland LH. Anti-complement effects of lactoferrin-derived peptides. FEMS Immunol Med Microbiol. 2004;41:141-8.

47. Shin ES, Chung SC, Kim YK, Lee SW, Kho HS. The relationship between oral Candida carriage and the secretor status of blood group antigens in saliva. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003;96:48-53.

48. Slomiany BL, Murty VLN, Piotrowski J, Slomiany A. Salivary mucins in oral mucosal defense. Gen Pharmac. 1996;27:761-71.

49. Soares RV, Lin T, Siqueira CC, Bruno LS, Li X, Oppenheim FG, et al. Salivary micelles: identification of complexes containing MG2, sIgA, lactoferrin, amylase, glycosylated proline-rich protein and lysozyme. Arch Oral Biol. 2004;49:337-43.

50. Sörensen OE, Follin P, Johnsen AH, Calafat J, Tjabringa GS, Hiemstra PS, et al. Human cathelicidin, hCAP18, is processed to the antimicrobial peptide LL37 by extracellular cleavage with proteinase 3. Blood. 2001;97:3951‑9.

51. Soukka T, Tenovuo J, Lenander-Lumikari m. Fungicidal effect of human lactoferrin against Candida albicans. FEMS Microbiol Lett. 1992;69:223-8.

52. Souza GFM, Andrade ESS, Miranda JL, Alves RD, Pinto LP, Almeida D. Abordagem imunológica da cárie dental. PGR: Pós-Graduação em Revista. 2001;4(2):28-33.

53. Souza RM, Lehn CN, Denardin OVP. Níveis sérico e salivar de imunoglobulina A em portadores de câncer da boca e orofaringe. Rev Assoc Med Bras. 2003;49:40‑4.

54. Sreebny LM, Banoczy J, Baum BJ, Edgar WM, Epstein JB, Fox PC. Saliva: Its role in health and disease. Int Dent J. 1992;42(4 Suppl 2):287-304.

55. Streckfus CF, Bigler LR. Salivary glands and saliva number 3- Saliva as a diagnostic fluid. Oral Dis. 2002;8:69‑76.

56. Tabak LA, Levine MJ, Mandel ID, Ellison SA. Role of salivary mucins in the protection of the oral cavity. J Oral Pathol. 1982;11:1-7.

57. Tabak LA. In defense of the oral cavity: structure, biosynthesis and function of salivary mucins. Ann Rev Physiol. 1995; 57: 547-64.

58. Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol. 2003;21:335-76.

59. Takei T, Aono W, Nagashima S, Yoshida T, Hashida T, Sobue S, et al. Change of salivary IgA secretion and caries development in irradiated rats. J Dent Res. 1994;73:1503-8.

60. Takubo T, Yamane T, Tsuda I, Tagawa S, Tatsumi N. Polymorphonuclear neutrophils in saliva and blood: a comparative study of morphology, function and phenotype. Br J Biomed Sci. 1997;54:260-6.

61. Takayama A, Satoh A, Ngai T, Nishimura T, Ikawa K, Matsuyama T, et al. Augmentation of Actinobacillus actinomycetemcomitans invasion of human oral epithelial cells and up-regulation of interleukin-8 production by saliva CD14. Infect Immun. 2003;71:5598-604.

62. Takahama U, Hirota S, Nishioka T, Oniki T. Humana salivary peroxidase-catalyzed oxidation of nitrite and nitration of salivary components 4-hydroxyphenylacetic acid and proteins. Arch Oral Biol. 2003;48:679-90.

63. Ten Cate R. Histologia bucal. Desenvolvimento, estrutura e função. 5ª ed. Rio de Janeiro: Guanabara- Koogan; 2001.

64. Tenovou JO. Human saliva: clinical chemistry and microbiology. Florida: CRC Press; 1989.

65. Tenovou JO, Lagerlöf F. Saliva. In: Thylstrup, A.; Fejerskov, O. Cariologia clínica. São Paulo: Livraria Editora Santos; 1995. p.17-43.

66. Tenovou JO. Clinical applications of antimicrobial host proteins lactoperoxidase, lysozime and lactoferrin in xerostomia: efficacy and safety. Oral Dis. 2002;8:23-9.

67. Uehara A, Sugawara S, Watanabe K, Echigo S, Sato M, Yamaguchi T, et al. Constitutive expression of a bacterial pattern recognition receptor, CD14, in human salivary glands and secretion as a soluble form in saliva. Clin Diagn Lab Immunol. 2003;10:286-92.

68. Ueta E, Osaki T, Yoneda K, Yamamoto T. Functions of salivary polymorphonuclear leukocytes (SPMNs) and peripheral blood polymorphonuclear leukocytes (PPMNs) from healthy individuals and oral cancer patients. Clin Immunol Immunopathol. 1993;66:272-8.

69. Van Steijn GJ, Nieuw Amerongen AV, Veerman EC, Kasanmoentalib S, Overdijk B. Chitinase in whole human saliva and glandular human salivas and in whole saliva of patients with periodontal inflammation. Eur J Oral Sci. 1999; 107:328-37.

70. Van Steijn GJ, Nieuw Amerongen AV, Veerman EC, Kasanmoentalib S, Overdijk B. Effect of periodontal treatment on the activity of chitinase in whole saliva of periodontitis patients. J Periodontal Res. 2002;37:245‑9.

71. Veerman ECI, van der Keijbus PAM, Nazmi K, Vos W, van der Wal JE, Bloemena E, et al. Distinct localization of MUC5B glycoforms in the human salivary glands. Glycobiology. 2003;13:363-6.

72. Wallengren MLL, Hamberg K, Ericson D, Nordberg J. Low salivary IgA activity to cell-surface antigens of mutans streptococci related to HLA-DRB1*04. Oral Microbiol Immunol. 2005;20:73–81.

73. Zasloff M. Innate immunity, antimicrobial peptides, and protection of the oral cavity. The Lancet. 2002;360:1116‑7.

74. Zee KY, Samaranayake LP, Attstrom R. Salivary immunoglobulin A levels a rapid and slow plaque formers: a pilot study. In: Rantonen P. Salivary flow and composition in healthy and diseased adults [Academic Dissertation]. Finland: Faculty of Medicine, University of Helsinki; 2003.
588017df7f8c9d0a098b4954 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections