Tecido ósseo: aspectos morfológicos e histofisiológicos
Bone tissue: morphological and histophysiological aspects
Andia, D.C.; Cerri, P.S.; Spolidorio, L.C.
Rev. odontol. UNESP, vol.35, n2, p.191-198, 2006
Resumo
O tecido ósseo tem papel importante no suporte, proteção e locomoção e está sob o controle de fatores sistêmicos, como os hormônios, e fatores locais, como os fatores de crescimento e as citocinas. Portanto, os sistemas imune e esquelético encontram-se intimamente relacionados; a esta área interdisciplinar de estudos deu-se o nome de Osteoimunologia. A homeostase do sistema esquelético está na dependência de uma remodelação óssea equilibrada, ou seja, da dinâmica balanceada entre a atividade dos osteoblastos, células de formação óssea, e osteoclastos, células de reabsorção óssea. Este balanço é firmemente controlado pelo sistema imune. Se este balanço inclinar-se a favor dos osteoclastos, levará a reabsorções patológicas, como nas periodontites, artrites reumatóides e doenças osteoporóticas. A compreensão deste processo, como um todo, pode ser a chave para o desenvolvimento de um protocolo de tratamento que poderia levar ao equilíbrio dessas doenças ósseas. Sendo assim, nesta revisão da literatura, nós fornecemos uma visão do tecido ósseo: a composição química de sua matriz, células e componentes celulares, descrevendo como ocorre o processo de remodelação óssea e alguns fatores locais e sistêmicos que interferem neste processo, como citocinas e hormônios.
Palavras-chave
Osteoblastos, osteoclastos, tecido ósseo, sistema imune
Abstract
The bone tissue has an important role in the support, protection and locomotion and it is under control of systemic factors, such as hormones and local regulatory molecules, for instance, growth factor and cytokines. Therefore, the immune and skeletal systems are intimately related; this interdisciplinary branch has been referred as Osteoimmunology. The homeostasis of the skeletal system depends directly on a balanced bone remodeling, i.e., the dynamic balance between the activities of the osteoblasts, bone forming cells and osteoclasts, bone resorbing cells. This balance is tightly and thoroughly controlled by some regulatory systems, such as the immune system. Tipping this balance towards the osteoclasts leads to pathological bone resorption, such as periodontitis, autoimmune arthritis and osteoporotic diseases. The understanding this overall process may be the key to development of a treatment protocol, which could lead to the balance of these bone diseases. Thus, in this literature review, we provide an overview of the bone tissue composition, its cells and proteins of bone matrix, describing how the remodeling bone process occurs, as well as some local and systemic factors that interfere in this process, such cytokines and hormones.
Keywords
Osteoblasts, osteoclasts, bone tissue, immune system
References
1. Katchburian E, Arana V. Histologia e embriologia oral. Texto-atlas-correlações clínicas. Rio de Janeiro: Guanabara Koogan; 2004.
2. Takayanagi H. Inflammatory bone destruction and osteoimmunology. J Periodontal Res. 2005;40:287-93.
3. Junqueira LC, Carneiro J. Tecido ósseo. In: Junqueira LC, Carneiro J. Histologia básica. Rio de Janeiro: Editora Guanabara Koogan; 2004. p. 111-128.
4. Cotram RS, Kumar V, Collins T. Ossos, articulações e tumores de partes moles. In: Cotran RS, Kumar V, Collins T. Robbins patologia estrutural e funcional. Rio de Janeiro: Guanabara Koogan; 2005. p. 1088-90.
5. Mackie EJ. Osteoblasts: novel roles in orchestration of skeletal architecture. Int J Biochem Cell Biol. 2003;35:1301-5.
6. Cerri, PS. Osteoblasts engulf apoptotic bodies during alveolar bone formation in the rat maxilla. Anat Rec A Discov Mol Cell Evol Biol. 2005;286:833-40.
7. Raisz LG, Rodan GA. Embriology and cellular biology of bone. In: Avioli LV, Krane SM. Metabolic bone diseases and clinically related disorders. San Diego: Academic Press; 1998. p. 1-22.
8. Sodek J, McKee ME. Molecular and cellular biology of alveolar bone. Periodontology 2000. 2000;24:99-126.
9. Mundy GR. Inflamatory mediators and the destruction of bone. J Periodantal Res. 1991;26:213-7.
10. Manolagas, S.C. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev. 2000; 21: 115-37.
11. Katchburian E, Cerri PS. Formação e destruição óssea. In: Cardoso RJA, Gonçalves EAN. Cirurgia para implantes. São Paulo: Artes Médicas; 2002. p. 437-45.
12. Marks JR SC, Popoff SN. Bone cell biology: the regulation of development, structure and function in the skeleton. Am J Anat. 1988; 183:1-44.
13. Arana-Chaves VE, Soares AMV, Katchburian E. Junctions between early developing osteoblasts of rat calvaria as revealed by freeze-fracture and ultrathin section electron mycroscopy. Arch Histol Cytol. 1995;58:285-92.
14. Anderson HC. Vesicles associated with calcification in the matrix of epiphyseal cartilage. J Cell Biol. 1969;41:59-72.
15. Katchburian E. Membrane-bound bodies as initiators of mineralization of dentine. J Anat. 1973;116:285-302.
16. Arana-Chavez VE, Massa LF. Odontoblasts: the cells forming and maintaining dentine. Int J Biochem Cell Biol. 2004;36:1367-73.
17. Ten Cate AR. Histologia bucal: desenvolvimento, estrutura e função. Rio de Janeiro: Guanabara Koogan; 2001.
18. Noble B. Microdamage and apoptosis. Eur J Morphol. 2005;42:91-8.
19. Garcia-Moreno C, Catalán MP, Ortiz A, Alvarez L, De la Piedra C. Modulation of survival in osteoblasts from postmenopausal women. Bone. 2004;35:170-7.
20. Tomkinson A, Gevers EF, Wit JM, Reeve J, Noble BS. The role of estrogen on the control of rat osteocyte apoptosis. J Bone Miner Res. 1998;13:1243-50.
21. Palumbo C, Ferretti M, De Pol A. Apoptosis during intramembranous ossification. J Anat 2003; 203:589-98.
22. Miller SC, Jee WSS. The bone lining cell: a distinct phenotype? Calcif Tissue Int. 1987;41:1-5.
23. Jilka RL, Weinstein RS, Bellido T, Parfitt AM, Manolagas SC. Osteoblast programmed cell death (apoptosis): modulation by growth factors and cytokines. J Bone Miner Res. 1998;13:793-802.
24. Boabaid F, Cerri PS, Katchburian E. Apoptotic bone cells may be engulfed by osteoclasts during alveolar bone resorption in young rats. Tissue Cell. 2001;33:318-25.
25. Sodek J, Overall CM. Matriz metalloproteinases in periodontal tissue remodelling. Matriz. 1992;1(suppl):352- 62.
26. Fukushima O, Bekker PJ, Gay C. Characterization of the functional stages of osteoclasts by enzime histochemistry and electron microscopy. Anat Rec. 1991;231: 298-315.
27. Elmardi AS, Katchburian MV, Katchburian E. Electron microscopy of developing calvaria reveals images that suggest that osteoclasts engulf and destroy osteocytes during bone resorption. Calcif tissue Int. 1990;46:239- 45.
28. Taniwaki NN, Katchburian E. Ultrastructural and lanthanum tracer examination of rapidly resorbing rat alveolar bone suggests that osteoclasts internalize dying bone cells. Cell Tissue.1998;293:173-6.
29. Cerri PS, Boabaid F, Katchburian E. Combined TUNEL and TRAP methods suggest that apoptotic bone cells are inside vacuoles of alveolar bone osteoclasts in young rats. J Periodontal Res. 2003;38:223-6.
30. Tanaka K, Yamaguchi Y, Hakeda Y. Isolated chick osteocytes stimulated formation and bone-resorbing activity of osteoclast-like cells. J Bone Miner Metab. 1995;13:61- 70.
31. Boyce BF, Hughes DE, Wright KR, Xing L, Daí A. Recent advances in bone biology provide insight into pathogenesis of bone diseases. Lab Invest. 1999;79:83- 94.
32. Urist MR, Huo YK, Brownell AG, Hohl WM,Buyske J, Lietze A, et al. Purification of bovine bone morphogenetic protein by hydroxyapatite chromatography. Proc Natl Acad Sci USA. 1984; 81: 371-475.
33. Dimitriou R, Gionnoudis PV. Discovery and development of BMPs. Int J Care Injured. 2005;36S:S28-S33.
34. Cao X, Chen Di. The BMP signaling and in vivo bone formation. Gene. 2005;357: 1-8.
35. Tani-ishii N, Tsunoda A, Teranaka T, Umemoto T. Autocrine regulation of osteoclast formation and bone resorption by IL-1” and TNF”. J Dent Res. 1999;78: 1617-23.
36. Roodman GD. Cell biology of the osteoclast. Exp Hematol. 1999;27:1229-41.
37. Takayanagi H, Kim S, Taniguchi T. Signaling crosstalk between RANKL and interferons in osteoclast differentiation. Arthritis Res. 2002; 4(suppl 3): S227-S232.
38. Takayanagi H, Ogasawara K, Hida S, Ciba T, Murata A, Sato K, et al. T-cell-mediated regulation of osteoclastogenesis by signaling cross-talk between RANKL and INF-γ. Nature. 2000; 408: 600-5.
39. Pacifici R. Estrogen, cytokines and pathogenesis of postmenopausal osteoporosis. J Bone Miner Res. 1996;11:1043-8.
40. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93:165-76.
41. Yasuda H, Shiman N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesisinhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA. 1998; 95:3597-602.
42. Rho J, Takami M, Choi Y. Osteoimmunology: interactions of the immune and skeletal systems. Mol Cells. 2004;17(1):1-9.
43. Noda M, Camilliere JJ. In vivo stimulation of bone formation by transforming growth factor beta. Endocrinology. 1989;124:2991-4.
44. Marcelli C, Yates AJ, Mundy GR. In vivo effects of human recombinant transforming growth factor beta on bone turnover in normal mice. Calcif Tiss Int. 1990; 46: A40-A41.
45. Goodman GR, Dissanayake IR, Bowman AR, Pun S, Ma Y, Jee WSS, et al. Transforming growth factor-ß administration modifies cyclosporine-A induced bone loss. Bone. 2001;28:583-8.
46. Epstein S, Schlosberg M, Fallon M, Thomas S, Movsowitz C, Ismail F. 1, 25 dihidroxivitamin D3 modifies cyclosporine-induced bone loss. Calcif Tissue Int. 1990; 47:152-7.
47. Mirosavljevic D, Quinn JM, Elliott J, Horwood NJ, Martin TJ, Gillespie MT. T- cells mediate an inhibitory effect of interleukin-4 on osteoclastogenesis. J Bone Miner Res. 2003;162:1018-23.