Revista de Odontologia da UNESP
https://revodontolunesp.com.br/journal/rou/article/doi/10.1590/1807-2577.1020
Revista de Odontologia da UNESP
Original Article

Histomorphometric evaluation of the association between bioglass and lyophilized bovine bone in the treatment of critical bone defects created on rat calvaria: a pilot study

Avaliação histomorfométrica da associação entre biovidro e osso bovino liofi lizado no tratamento de defeitos ósseos críticos criados em calvárias de ratos. Estudo piloto

Spin, José Rodolfo; Oliveira, Guilherme José Pimentel Lopes de; Spin-Neto, Rubens; Pires, Juliana Rico; Tavares, Hewerson Santos; Ykeda, F.; Marcantonio, Rosemary Adriana Chiérici

Downloads: 0
Views: 1084

Abstract

Objective: This study sought to histomorphometrically evaluate the effect of bioglass (B), lyophilized bovine bone (BB) or the 1:1 mixture of these two biomaterials on the repair of critical bone defects in rat calvaria. Material and method: Bone defects (8 mm Ø) were surgically created in the calvaria of 24 rats, which were divided into the following 4 groups of 6 animals each according to the type of biomaterial used: blood clot / coagulum (control) group (CG), bioglass group (BG), lyophilized bovine bone group (BBG) and a group receiving a mixture of these two biomaterials (BG/BB). The animals were euthanized at 15 or 60 days after surgery (3 animals per period). Histological evaluation was based on the morphological description of the newly formed tissues, and a quantification of the percentage of bone tissue with newly formed fibrous connective tissue and the percentage of biomaterial remaining in the bone defect was performed for the histomorphometric evaluation. Result: In both experimental periods, the histological analysis showed new bone formation, especially at the edges of the defects and around remaining biomaterial particles. Histomorphometric analysis showed that the CG contained a higher percentage of bone tissue over the 15-day period compared to that of the other groups. At 60 days, the BBG showed a higher percentage of bone tissue compared to that of the BG (p <0.01). Conclusion: Lyophilized bovine bone led to greater bone formation compared to bioglass, but none of the biomaterials was superior to blood clot. Moreover, the combination of bioglass and lyophilized bovine bone did not provide an advantage for bone formation.

Keywords

Histology, bone, bone repair.

Resumo

Objetivo: Avaliar histomorfometricamente o efeito de biovidro (B), osso bovino liofilizado (OB) ou da mistura desses dois biomateriais (B/OB - 1:1) no reparo de defeitos ósseos críticos em calvária de ratos. Material e método: Defeitos ósseos (8 mm Ø) foram criados cirurgicamente na calvária de 24 ratos, distribuídos em 4 grupos com 6 animais, de acordo com o tipo de biomaterial: coágulo sanguíneo (GC), biovidro (GB), osso bovino liofilizado (GOB) e a mistura desses dois biomateriais (GB/OB). Os animais foram eutanasiados após 15 e 60 dias do procedimento cirúrgico (3 animais por período). A avaliação histológica foi baseada na descrição da morfologia dos tecidos neoformados, enquanto para a avaliação histomorfométrica foi realizada quantificação da porcentagem de tecido ósseo, de tecido conjuntivo fibroso neoformados e de biomaterial remanescente no defeito ósseo. Resultado: Nos dois períodos experimentais, a análise histológica apresentou neoformação óssea, principalmente nas bordas dos defeitos, e ao redor de partículas de biomateriais remanescentes. A avaliação histomorfométrica demonstrou que no período de 15 dias o grupo GC apresentou maior percentagem de tecido ósseo em relação aos demais grupos estudados, enquanto que aos 60 dias o grupo GOB apresentou maior porcentagem de tecido ósseo em relação ao grupo GB. Conclusão: O osso bovino liofilizado apresentou maior formação óssea em relação ao biovidro, mas nenhum dos biomateriais foi superior ao coágulo. A associação do biovidro e osso bovino liofilizado não adicionou vantagem à formação óssea.

Palavras-chave

Histologia, osso, reparo ósseo.

References

1. Dhima M, Paulusova V, Lohse C, Salinas TJ, Carr AB. Practice-based evidence from 29-year outcome analysis of management of the edentulous jaw using osseointegrated dental implants. J Prosthodont. 2014; 23(3): 173-81. http://dx.doi.org/10.1111/jopr.12084. PMid:23889912

2. Krebs M, Schmenger K, Neumann K, Weigl P, Moser W, Nentwig GH. Long-term evaluation of ANKYLOS® dental implants, part I: 20-year life table analysis of a longitudinal study of more than 12,500 implants. Clin Implant Dent Relat Res. 2013. http://dx.doi.org/10.1111/cid.12154. PMid:24103113. [Epub ahead of print]

3. Simunek A, Kopecka D, Somanathan RV, Pilathadka S, Brazda T. Deproteinized bovine bone versus beta-tricalcium phosphate in sinus augmentation surgery: a comparative histologic and histomorphometric study. Int J Oral Maxillofac Implants. 2008; 23(5): 935-42. PMid:19014165.

4. John HD, Wenz B. Histomorphometric analysis of natural bone mineral for maxillary sinus augmentation. Int J Oral Maxillofac Implants. 2004; 19(2): 199-207. PMid:15101590.

5. Scarano A, Degidi M, Iezzi G, Pecora G, Piattelli M, Orsini G, et al. Maxillary sinus augmentation with different biomaterials: a comparative histologic and histomorphometric study in man. Implant Dent. 2006; 15(2): 197-207. http://dx.doi.org/10.1097/01.id.0000220120.54308.f3. PMid:16766904

6. Spin-Neto R, Stavropoulos A, Coletti FL, Faeda RS, Pereira LA, Marcantonio E Jr. Graft incorporation and implant osseointegration following the use of autologous and fresh-frozen allogeneic block bone grafts for lateral ridge augmentation. Clin Oral Implants Res. 2014; 25(2): 226-33. http://dx.doi.org/10.1111/clr.12107. PMid:23346871

7. Jensen T, Schou S, Stavropoulos A, Terheyden H, Holmstrup P. Maxillary sinus floor augmentation with Bio-Oss or Bio-Oss mixed with autogenous bone as graft: a systematic review. Clin Oral Implants Res. 2012; 23(3): 263-73. http://dx.doi.org/10.1111/j.1600-0501.2011.02168.x. PMid:21443592

8. Carmagnola D, Abati S, Celestino S, Chiapasco M, Bosshardt D, Lang NP. Oral implants placed in bone defects treated with Bio-Oss, Ostim-Paste or PerioGlas: an experimental study in the rabbit tibiae. Clin Oral Implants Res. 2008; 19(12): 1246-53. http://dx.doi.org/10.1111/j.1600-0501.2008.01584.x. PMid:19040439

9. Galindo-Moreno P, Avila G, Fernández-Barbero JE, Mesa F, O’Valle-Ravassa F, Wang HL. Clinical and histologic comparison of two different composite grafts for sinus augmentation: a pilot clinical trial. Clin Oral Implants Res. 2008; 19(8): 755-9. http://dx.doi.org/10.1111/j.1600-0501.2008.01536.x. PMid:18573123

10. Jensen T, Schou S, Stavropoulos A, Terheyden H, Holmstrup P. Maxillary sinus floor augmentation with Bio-Oss or Bio-Oss mixed with autogenous bone as graft in animals: a systematic review. Int J Oral Maxillofac Surg. 2012; 41(1): 114-20. http://dx.doi.org/10.1016/j.ijom.2011.08.010. PMid:22000958

11. Schmitt JM, Buck DC, Joh SP, Lynch SE, Hollinger JO. Comparison of porous bone mineral and biologically active glass in critical-sized defects. J Periodontol. 1997; 68(11): 1043-53. http://dx.doi.org/10.1902/jop.1997.68.11.1043. PMid:9407396

12. Annalisa P, Furio P, Ilaria Z, Anna A, Luca S, Marcella M, et al. Anorganic bovine bone and a silicate-based synthetic bone activate different microRNAs. J Oral Sci. 2008; 50(3): 301-7. http://dx.doi.org/10.2334/josnusd.50.301. PMid:18818466

13. Spin-Neto R, de Freitas RM, Pavone C, Cardoso MB, Campana-Filho SP, Marcantonio RA, et al. Histological evaluation of chitosan-based biomaterials used for the correction of critical size defects in rat’s calvaria. J Biomed Mater Res A. 2010; 93(1): 107-14. http://dx.doi.org/10.1002/jbm.a.32491. PMid:19536827.

14. Hallman M, Lundgren S, Sennerby L. Histologic analysis of clinical biopsies taken 6 months and 3 years after maxillary sinus floor augmentation with 80% bovine hydroxyapatite and 20% autogenous bone mixed with fibrin glue. Clin Implant Dent Relat Res. 2001; 3(2): 87-96. http://dx.doi.org/10.1111/j.1708-8208.2001.tb00236.x. PMid:11472655

15. Jensen T, Schou S, Gundersen HJ, Forman JL, Terheyden H, Holmstrup P. Bone-to-implant contact after maxillary sinus floor augmentation with Bio-Oss and autogenous bone in different ratios in mini pigs. Clin Oral Implants Res. 2013; 24(6): 635-44. http://dx.doi.org/10.1111/j.1600-0501.2012.02438.x. PMid:22530746

16. Stavropoulos A, Kostopoulos L, Nyengaard JR, Karring T. Deproteinized bovine bone (Bio-Oss) and bioactive glass (Biogran) arrest bone formation when used as an adjunct to guided tissue regeneration (GTR): an experimental study in the rat. J Clin Periodontol. 2003; 30(7):636-43. http://dx.doi.org/10.1034/j.1600-051X.2003.00093.x. PMid:12834502

17. Schwartz Z, Doukarsky-Marx T, Nasatzky E, Goultschin J, Ranly DM, Greenspan DC, et al. Differential effects of bone graft substitutes on regeneration of bone marrow. Clin Oral Implants Res. 2008; 19(12): 1233-45. http://dx.doi.org/10.1111/j.1600-0501.2008.01582.x.PMid:19040438

18. Lu J, Descamps M, Dejou J, Koubi G, Hardouin P, Lemaitre J, et al. The biodegradation mechanism of calcium phosphate biomaterials in bone. J Biomed Mater Res. 2002; 63(4): 408-12. http://dx.doi.org/10.1002/jbm.10259. PMid:12115748

19. Bassi APF, Carvalho PSP. Repair of bone cavities in dog’s mandible filled with inorganic bovine bone and bioactive glass associated with platelet rich plasma. Braz Dent J. 2011; 22(1): 14-20. http://dx.doi.org/10.1590/S0103-64402011000100002. PMid:21519642.

588019cf7f8c9d0a098b5355 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections