Revista de Odontologia da UNESP
https://revodontolunesp.com.br/journal/rou/article/doi/10.1590/1807-2577.09916
Revista de Odontologia da UNESP
Original Article

Efeito de diferentes fotopolimerizadores e meio de imersão na rugosidade e na cor de um compósito nanoparticulado

Effect of different light curing units and immersion media on roughness and color of a nanofill composite

Plaster, Suéllen Campos; Peixoto, Letícia Monteiro; Guedes, Ana Paula Albuquerque; Silva, Ana Paula Albuquerque Guedes Daniela Nascimento; Castro, Martha Chiabai Cupertino

Downloads: 0
Views: 1115

Resumo

Introdução: O consumo excessivo de refrigerantes parece alterar as propriedades dos compósitos e essa alteração pode estar relacionada à unidade fotopolimerizadora. Objetivo: Avaliar a alteração da rugosidade superficial (ΔR) e da cor (ΔE) de um compósito polimerizado por diferentes fotopolimerizadores, imerso em água destilada ou Coca-Cola®. Metodologia: Sessenta amostras da resina nanoparticulada (FiltekMR Z350 XT, 3M) foram distribuídas de acordo com as diferentes unidades de fotopolimerização: a) luz halógena de quartzo-tungstênio-halogênio (QTH); b) Luz de Emissão Diodo - LED 1 com ponteira de polímero; c) LED 2 com ponteira de fibra ótica. Metade de cada grupo (n=10) foi mantida em água destilada ou imersa em Coca-Cola® 2×/dia por 20 minutos, durante 14 dias. Os dados foram submetidos aos testes Mann-Whitney e Kruskal-Wallis (p≤0,05). Resultado: A ΔR não foi significante entre os grupos: em água: QTH = 0,006; LED 1 = 0,019; LED 2 = 0,010 (p=0,33); em refrigerante: QTH = 0,021; LED 1= 0,011; LED 2 = 0,030 (p=0,86). A ΔE não foi significativa entre os fotopolimerizadores: em água: QTH = 1,40; LED 1 = 1,80; LED 2 = 1,60 (p=0,31); em refrigerante: QTH = 2,51; LED 1= 1,91; LED 2 = 2,61 (p=0,41), mas foi significante comparando os meios de imersão (p=0,01), exceto para LED 1 (p=0,54). Conclusão: As unidades fotopolimerizadoras não interferiram na rugosidade superficial e na cor da resina composta nanoparticulada. Os mergulhos diários em refrigerante não alteraram a lisura, mas alteraram a cor de modo visualmente perceptível, mas clinicamente aceitável, conforme os parâmetros da literatura científica.

Palavras-chave

Resinas compostas, fotopolimerização, cor, propriedades de superfície

Abstract

Introduction: The excessive consumption of soft drinks seems to change the properties of composites and may be associated with the light curing unit. Objective: To evaluate changes in surface roughness (ΔR) and color (ΔE) of one composite polymerized with different light sources, immersed in distilled water or in Coca-Cola®. Methodology: Sixty samples of nanofilled resin (FiltekMR Z350 XT, 3M) were distributed into following light curing units: a) quartz-tungsten-halogen (QTH) light; b) light emitting diode (LED) with polymer tip (LED 1) and c) LED with optic fiber tip (LED 2). Half of each group (n=10) was kept in water or immersed in Coca-Cola® for 20 minutes 2x/day during 14 days. Data were submitted to the Mann-Whitney and Kruskal-Wallis tests (p≤0.05). Result: The ΔR was not significant among groups: in water: QTH = 0.006; LED 1 = 0.019; LED 2 = 0.010 (p=0.33); in soft drink: QTH = 0.021; LED 1= 0.011; LED 2 = 0.030 (p=0.86). The ΔE was not significant among light curing units: in water: QTH = 1.40; LED 1 = 1.80; LED 2 = 1.60 (p=0.31); in soft drink: QTH = 2.51; LED 1= 1.91; LED 2 = 2.61 (p=0.41), but was significant compared the immersion media (p=0.01), except for LED 1 (p=0.54). Conclusion: The light curing lights did not interfere with the surface roughness and with color of nanofilled composite. Daily dives in soft drinks did not change smoothness, but the color changed to visually perceptible way, though clinically acceptable, according to the scientific literature parameters.

Keywords

Composite resins, photopolymerization, color, surface properties

References

1. Wang X, Lussi A. Assessment and management of dental erosion. Dent Clin North Am. 2010 Jul;54(3):565-78. PMid:20630197. http://dx.doi.org/10.1016/j.cden.2010.03.003.

2. Valinoti AC, Neves BG, Silva EM, Maia LC. Surface degradation of composite resins by acidic medicines and ph-cycling. J Appl Oral Sci. 2008 Jul-Aug;16(4):257-65. PMid:19089257. http://dx.doi.org/10.1590/S1678-77572008000400006.

3. Rahim TN, Mohamad D, Md Akil H, Ab Rahman I. Water sorption characteristics of restorative dental composites immersed in acidic drinks. Dent Mater. 2012 Jun;28(6):e63-70. PMid:22480722. http://dx.doi.org/10.1016/j.dental.2012.03.011.

4. Briso AL, Caruzo LP, Guedes AP, Catelan A, Santos PH. In vitro evaluation of surface roughness and microhardness of restorative materials submitted to erosive challenges. Oper Dent. 2011 Jul-Aug;36(4):397-402. PMid:21827225. http://dx.doi.org/10.2341/10-356-L.

5. Aguiar FH, Georgetto MH, Soares GP, Catelan A, Santos PH, Ambrosano GM, et al. Effect of different light-curing modes on degree of conversion, staining susceptibility and stain’s retention using different beverages in a nanofilled composite resin. J Esthet Restor Dent. 2011 Apr;23(2):106-14. PMid:21477037. http://dx.doi.org/10.1111/j.1708-8240.2011.00406.x.

6. Lepri CP, Palma-Dibb RG. Surface roughness and color change of a composite: influence of beverages and brushing. Dent Mater J. 2012;31(4):689-96. PMid:22864226. http://dx.doi.org/10.4012/dmj.2012-063.

7. Ilie N, Hickel R. Resin composite restorative materials. Aust Dent J. 2011 Jun;56(Suppl 1):59-66. PMid:21564116. http://dx.doi.org/10.1111/j.1834-7819.2010.01296.x.

8. Beun S, Glorieux T, Devaux J, Vreven J, Leloup G. Characterization of nanofilled compared to universal and microfilled composites. Dent Mater. 2007 Jan;23(1):51-9. PMid:16423384. http://dx.doi.org/10.1016/j.dental.2005.12.003.

9. Fatima N, Abidi SY, Qazi FU, Jat SA. Effect of different tetra pack juices on microhardness of direct tooth colored-restorative materials. Saudi Dent J. 2013 Jan;25(1):29-32. PMid:23960552. http://dx.doi.org/10.1016/j.sdentj.2012.09.002.

10. Oliveira AL, Botta AC, Campos JA, Garcia PP. Influence of light curing units and fluoride mouthrinse on morphological surface and color stability of a nanofilled composite resin. Microsc Res Tech. 2014 Nov;77(11):941-6. PMid:25125375. http://dx.doi.org/10.1002/jemt.22421.

11. Vandewalle KS, Roberts HW, Tiba A, Charlton DG. Thermal Emission and Curing Efficiency of LED and halogen curing lights. Oper Dent. 2005 Mar-Apr;30(2):257-64. PMid:15853113.

12. Voltarelli FR, Santos-Daroz CB, Alves MC, Peris AR, Marchi GM. Effect of different light-curing devices and aging procedures on composite knoop microhardness. Braz Oral Res. 2009 Oct-Dec;23(4):473-9. PMid:20027457. http://dx.doi.org/10.1590/S1806-83242009000400019.

13. Yazici AR, Celik C, Ozgünaltay G, Dayangaç B. The effects of different light-curing units on the clinical performance of nanofilled composite resin restorations in non-carious cervical lesions: 3-year follow-up. J Adhes Dent. 2010 Jun;12(3):231-6. http://dx.doi.org/10.3290/j.jad.a17536. PMid:20157672.

14. Rueggeberg FA, Caughman WF. Factors affecting light transmission of single-use, plastic light-curing tips. Oper Dent. 1998 Jul-Aug;23(4):179-84. PMid:9760920.

15. Ccahuana-Vásquez RA, Torres CRG, Araújo MAM, Anido AA. Influência do tipo de ponteira condutora de luz de aparelhos LED na microdureza das resinas compostas. Rev Odontol UNESP. 2004 Abr-Jun;33(2):69-73.

16. 3M. FiltekTM Z350 XT. 3M ESPE Dental Supplies [Internet]. [citado em 2016 Abr 15]. Disponível em: http://solutions.3mae.ae/wps/portal/3M/en_AE/3M_ESPE/Dental-Manufacturers/Products/Dental-Restorative-Materials

17. Um CM, Ruyter IE. Staining of resin-based veneering materials with coffee and tea. Quintessence Int. 1991 May;22(5):377-86. PMid:1924691.

18. Janda R, Roulet JF, Latta M, Kaminsky M, Rüttermann S. Effect of exponential polymerization on color stability of resin-based filling materials. Dent Mater. 2007 Jun;23(6):696-704. PMid:16899289. http://dx.doi.org/10.1016/j.dental.2006.06.009.

19. Braga SRM, Garone N No, Soler JMP, Sobral MAP. Degradação dos materiais restauradores utilizados em lesões cervicais não cariosas. Rev Gaucha Odontol. 2010 Out-Dez;58(4):431-6.

20. Santos PA, Garcia PP, Oliveira AL, Chinelatti MA, Palma-Dibb RG. Chemical and morphological features of dental composite resin: influence of light curing units and immersion media. Microsc Res Tech. 2010 Mar;73(3):176-81. http://dx.doi.org/10.1002/jemt.20769. PMid:19839036.

21. Sirin Karaarslan E, Bulbul M, Yildiz E, Secilmis A, Sari F, Usumez A. Effects of different polishing methods on color stability of resin composites after accelerated aging. Dent Mater J. 2013;32(1):58-67. PMid:23370871. http://dx.doi.org/10.4012/dmj.2012-045.

22. Karaman E, Tuncer D, Firat E, Ozdemir OS, Karahan S. Influence of different staining beverages on color stability, surface roughness and microhardness of silorane and methacrylate-based composite resins. J Contemp Dent Pract. 2014 May;15(3):319-25. PMid:25307814. http://dx.doi.org/10.5005/jp-journals-10024-1536.

23. Asmussen E, Peutzfeld TA. Influence of selected components on crosslink density in polymer structures. Eur J Oral Sci. 2001 Aug;109(4):282-5. PMid:11531075. http://dx.doi.org/10.1034/j.1600-0722.2001.00057.x.

24. Halvorson RH, Erickson RL, Davidson CL. Polymerization efficiency of curing lamps: a universal energy conversion relationship predictive of conversion of resin-based composite. Oper Dent. 2004 Jan-Feb;29(1):105-11. PMid:14753341.

25. Egilmez F, Ergun G, Cekic-Nagas I, Vallittu PK, Lassila LV. Short and long term effects of additional post curing and polishing systems on the color change of dental nano-composites. Dent Mater J. 2013;32(1):107-14. PMid:23370878. http://dx.doi.org/10.4012/dmj.2012-251.

588019ea7f8c9d0a098b53c6 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections