Revista de Odontologia da UNESP
https://revodontolunesp.com.br/journal/rou/article/doi/10.1590/1807-2577.02716
Revista de Odontologia da UNESP
Original Article

Analysis of the distribution of stress and deformation in single implant-supported prosthetic units in implants of different diameters

Análise da distribuição das tensões e deformações em reabilitações implanto-suportadas unitárias com implantes de diferentes diâmetros

Mannarino, Francesco Salvatore; Francischone Júnior, Carlos Eduardo; Carvalho, Renato Savi de; Sotto-Maior, Bruno Salles; Francischone, Carlos Eduardo

Downloads: 1
Views: 1136

Abstract

Introduction: When stress and strain levels in the bone-implant system exceed It's capacity, a mechanical fatigue occurs, resulting in collapse and loss of osseointegration. Objective: Analyze biomechanical behavior in single implant-supported prosthesis with implants of different diameters in the posterior mandible. Material and method: Three different finite element models of Cone-Morse implants with the same height were created, varying the diameter (3.3 mm, 4.1 mm and 4.8 mm). The mandibular first molar area was the location of the implant, with It´s component and overlying prosthetic crown. The jawbone was composed of cortical and cancellous bone. Refined mesh of 0.5 mm was created in the critical interfaces to be analyzed. The loading of the models was performed at the point of occlusal contact with an occlusal load of 400 N. Result: Maximum stress and strain occurred in the cervical regions of the implants in all groups, either in the implants or in components as well as in the analysis of cortical bone. The greater the diameter, the lower the stress and strain found in the implant. The 3.3 mm group had the highest strain in peri-implant cortical bone, and the 4.1 mm group had the smallest deformation, significantly lower than in the 4.8 mm group. Conclusion: Although the biggest implant diameter (4.8 mm) appears to have lower values of stress and strain, the group of intermediate implant diameter (4.1 mm) showed less deformation rate in the cortical peri-implant bone. Therefore it is concluded that the 4.1 mm implant platform presented a more biomechanically effective peri-implant bone maintenance.

Keywords

Biomechanic, dental implant, finite element analysis.

Resumo

Introdução: Quando os níveis de tensão e compressão gerados no sistema osso-implante excederem a capacidade óssea ocorre uma fadiga mecânica, resultando em colapso e perda da osseointegração. Objetivo: Analisar o comportamento biomecânico em próteses unitárias implanto-suportadas com implantes de diferentes diâmetros na região posterior de mandíbula. Material e método: Foram criados três modelos de elementos finitos de implantes cone-Morse de mesmo comprimento, variando-se o diâmetro: 3,3 mm, 4,1 mm e 4,8 mm. A localização do implante foi a região de primeiro molar inferior, com componente e coroa protética sobrejacentes. A mandíbula foi composta por osso cortical e medular. Foi criada malha refinada de 0,5 mm nas interfaces criticas a serem analisadas. O carregamento dos modelos foi realizado nos pontos de contatos oclusais, com uma carga oclusal de 400 N. Resultado: Tensão e deformação máximas ocorreram nas regiões cervicais dos implantes em todos os grupos, tanto na análise dos implantes e componentes quanto na análise do osso cortical. Quanto maior foi o diâmetro, menores foram tensão e deformação encontradas no implante. O grupo 3,3 mm apresentou a maior deformação em osso cortical periimplantar, tendo o grupo 4,1 mm a menor deformação, significantemente menor em relação ao grupo 4,8 mm. Conclusão: Apesar de o implante de maior diâmetro (4,8 mm) ter apresentado os menores valores de tensão e deformação, o grupo do implante de diâmetro intermediário (4,1 mm) mostrou menor taxa de deformação em osso cortical periimplantar. Portanto conclui-se que o implante de plataforma 4,1 mm apresentou-se mais efetivo biomecanicamente para manutenção óssea periimplantar.

Palavras-chave

Biomecânica, implante dental, análise por elementos finitos.

References

1. Sakka S, Baroudi K, Nassani MZ. Factors associated with early and late failure of dental implants. J Investig Clin Dent. 2012 Nov;3(4):258-61. http://dx.doi.org/10.1111/j.2041-1626.2012.00162.x. PMid:22927130.

2. Chang M, Chronopoulos V, Mattheos N. Impact of excessive occlusal load on successfully-osseointegrated dental implants: a literature review. J Investig Clin Dent. 2013 Aug;4(3):142-50. http://dx.doi.org/10.1111/jicd.12036. PMid:23918506.

3. Esposito M, Thomsen P, Ericson LE, Sennerby L, Lekholm U. Histopathologic observations on late oral implant failures. Clin Implant Dent Relat Res. 2000;2(1):18-32. http://dx.doi.org/10.1111/j.1708-8208.2000.tb00103.x. PMid:11359271.

4. Duyck J, Vandamme K. The effect of loading on peri-implant bone: a critical review of the literature. J Oral Rehabil. 2014 Oct;41(10):783-94. http://dx.doi.org/10.1111/joor.12195. PMid:24889500.

5. Podaropoulos L, Veis AA, Trisi P, Papadimitriou S, Alexandridis C, Kalyvas D. Bone reactions around dental implants subjected to progressive static load: an experimental study in dogs. Clin Oral Implants Res. 2016 Jul;27(7):910-7. http://dx.doi.org/10.1111/clr.12658. PMid:26202378.

6. Meyer G, Fanghanel J, Proff P. Morphofunctional aspects of dental implants. Ann Anat. 2012 Mar;194(2):190-4. http://dx.doi.org/10.1016/j.aanat.2011.09.006. PMid:22137145.

7. Meijer HJ, Starmans FJ, Steen WH, Bosman F. A three-dimensional, finite element analysis of bone around dental implants in an edentulous human mandible. Arch Oral Biol. 1993 Jun;38(6):491-6. http://dx.doi.org/10.1016/0003-9969(93)90185-O. PMid:8343071.

8. Trivedi S. Finite element analysis: a boon to dentistry. J Oral Biol Craniofac Res. 2014 Sep-Dec;4(3):200-3. http://dx.doi.org/10.1016/j.jobcr.2014.11.008. PMid:25737944.

9. Norton MR. Marginal bone levels at single tooth implants with a conical fixture design: the influence of surface macro- and microstructure. Clin Oral Implants Res. 1998 Apr;9(2):91-9. http://dx.doi.org/10.1034/j.1600-0501.1998.090204.x. PMid:9663036.

10. Tada S, Stegaroiu R, Kitamura E, Miyakawa O, Kusakari H. Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants. 2003 May-Jun;18(3):357-68. PMid:12814310.

11. Renouard F, Nisand D. Impact of implant length and diameter on survival rates. Clin Oral Implants Res. 2006 Oct;17(Suppl 2):35-51. http://dx.doi.org/10.1111/j.1600-0501.2006.01349.x. PMid:16968380.

12. Olate S, Lyrio MC, Moraes M, Mazzonetto R, Moreira RW. Influence of diameter and length of implant in early dental implant failure. J Oral Maxillofac Surg. 2010 Feb;68(2):414-9. http://dx.doi.org/10.1016/j.joms.2009.10.002. PMid:20116716.

13. Mohamed JB, Alam MN, Salman A, Chandrasekaran SC. Narrow diameter implant in posterior region. J Indian Soc Periodontol. 2012 Oct-Dec;16(4):610-3. http://dx.doi.org/10.4103/0972-124X.106932. PMid:23492972.

14. Klein MO, Schiegnitz E, Al-Nawas B. Systematic review on success of narrow-diameter dental implants. Int J Oral Maxillofac Implants. 2014;29(Suppl):43-54. http://dx.doi.org/10.11607/jomi.2014suppl.g1.3. PMid:24660189.

15. Degidi M, Piattelli A, Carinci F. Clinical outcome of narrow diameter implants: a retrospective study of 510 implants. J Periodontol. 2008 Jan;79(1):49-54. http://dx.doi.org/10.1902/jop.2008.070248. PMid:18166092.

16. Vigolo P, Givani A, Majzoub Z, Cordioli G. Clinical evaluation of small-diameter implants in single-tooth and multiple-implant restorations: a 7-year retrospective study. Int J Oral Maxillofac Implants. 2004 Sep-Oct;19(5):703-9. PMid:15508986.

17. Polizzi G, Fabbro S, Furri M, Herrmann I, Squarzoni S. Clinical application of narrow Branemark System implants for single-tooth restorations. Int J Oral Maxillofac Implants. 1999 Jul-Aug;14(4):496-503. PMid:10453663.

18. Petrie CS, Williams JL. Comparative evaluation of implant designs: influence of diameter, length, and taper on strains in the alveolar crest: a three-dimensional finite-element analysis. Clin Oral Implants Res. 2005 Aug;16(4):486-94. http://dx.doi.org/10.1111/j.1600-0501.2005.01132.x. PMid:16117775.

19. Lan TH, Du JK, Pan CY, Lee HE, Chung WH. Biomechanical analysis of alveolar bone stress around implants with different thread designs and pitches in the mandibular molar area. Clin Oral Investig. 2012 Apr;16(2):363-9. http://dx.doi.org/10.1007/s00784-011-0517-z. PMid:21301903.

20. Qian L, Todo M, Matsushita Y, Koyano K. Effects of implant diameter, insertion depth, and loading angle on stress/strain fields in implant/jawbone systems: finite element analysis. Int J Oral Maxillofac Implants. 2009 Sep-Oct;24(5):877-86. PMid:19865628.

21. Watanabe F, Hata Y, Komatsu S, Ramos TC, Fukuda H. Finite element analysis of the influence of implant inclination, loading position, and load direction on stress distribution. Odontology. 2003 Sep;91(1):31-6. http://dx.doi.org/10.1007/s10266-003-0029-7. PMid:14505187.

22. Fuh L, Hsu J, Huang HL, Chen MY, Shen YW. Biomechanical investigation of thread designs and interface conditions of zirconia and titanium dental implants with bone: three dimensional numeric analysis. Int J Oral Maxillofac Implants. 2013 Mar-Apr;28(2):e64-71. http://dx.doi.org/10.11607/jomi.2131. PMid:23527370.

588019e97f8c9d0a098b53c1 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections