Revista de Odontologia da UNESP
https://revodontolunesp.com.br/journal/rou/article/doi/10.1590/1807-2577.0081
Revista de Odontologia da UNESP
Original Article

Insertion angle of orthodontic mini-implants and their biomechanical performance: finite element analysis

Ângulo de inserção de mini-implantes ortodônticos e seu desempenho biomecânico: análise de elementos finitos

Arantes, Vinícius de Oliveira Rossi; Corrêa, Cassia Belloto; Lunardi, Nádia; Boeck Neto, Rodolfo Jorge; Spin-Neto, Rubens; Boeck, Eloisa Marcantonio

Downloads: 1
Views: 1150

Abstract

Objective: The aim of this study was to assess the stresses and strains generated after the application of two types of forces (traction of 200 gf and torsion of 20 N.cm) in two types of orthodontic mini-implants inserted at different (45° and 90° to the cortical bone) angles. Material and method: three-dimensional models of two brands of mini-implant (SIN – Sao Paulo, Brazil, and RMO – South Korea) were exported and analyzed by finite element analysis (FEA). Analyses were performed on simulations of cortical bone, cancellous bone and the screw. Result: FEA analysis showed that RMO mini-implants had greater elastic deformation when subjected to tensile and torsional forces when compared with SIN mini-implants. For both trademarks and insertion angles tested, there was greater cortical bone deformation, but with the greatest strain located on the mini-implant. Tension on the mini-implant was located in its transmucosal profile region. Conclusion: When comparing the two brands of mini-implants by FEA, it is fair to conclude that that the larger number of threads and their greater angle of inclination resulted in less resistance to deformation and induced a higher level of tension in the mini-implant and cortical bone when subjected to forces, especially when inserted at an angle of 45º to the cortical bone.

Keywords

Orthodontic anchorage procedures, orthodontic, finite element analysis.

Resumo

Objetivo: O objetivo deste estudo foi avaliar as tensões e deformações de duas marcas comerciais de mini-implantes ortodônticos geradas após a aplicação de dois tipos de forças (de tração de 200 gf e torção de 20 N.cm) inseridos em duas angulações (45° e 90° em relação ao osso cortical). Material e método: Modelos tridimensionais das duas marcas de mini-implantes (SIN - Sao Paulo, Brasil, e RMO – Coréia do Sul) foram construídos e analisados por análise de elementos finitos (FEA). As análises foram realizadas em simulações no osso cortical, osso esponjoso e no parafuso. Resultado: A análise FEA mostrou que os mini-implantes da marca RMO apresentaram maior deformação elástica quando submetidos à tração e as forças de torção quando comparado aos mini-implantes da marca SIN. Em ambas as marcas testadas, e para os diferentes ângulos de inserção, houve uma maior deformação do osso cortical, com maior tensão localizado no mini-implante. A tensão no mini-implante foi localizado na região do perfil transmucoso. Conclusão: Ao comparar as análises de elementos finitos das duas marcas comerciais de mini-implantes, concluiu-se que um maior número de roscas e maior inclinação resultam em menor resistência à deformação e induzem uma maior tensão no osso cortical quando submetidos à forças de torção e tração, especialmente quando inserido em um ângulo de 45º com o osso cortical

Palavras-chave

Procedimentos de ancoragem ortodôntica, ortodontia, análise de elementos finitos.

References

1. Liu TC, Chang CH, Wong TY, Liu JK. Finite element analysis of miniscrew implants used for orthodontic anchorage. Am J Orthod Dentofacial Orthop. 2012 Apr;141(4):468-76. http://dx.doi.org/10.1016/j.ajodo.2011.11.012. PMid:22464529.

2. Crismani AG, Bertl MH, Celar AG, Bantleon HP, Burstone CJ. Miniscrews in orthodontic treatment: review and analysis of published clinical trials. Am J Orthod Dentofacial Orthop. 2010 Jan;137(1):108-13. http://dx.doi.org/10.1016/j.ajodo.2008.01.027. PMid:20122438.

3. Miyawaki S, Koyama I, Inoue M, Mishima K, Sugahara T, Takano-Yamamoto T. Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. Am J Orthod Dentofacial Orthop. 2003 Oct;124(4):373-8. http://dx.doi.org/10.1016/S0889-5406(03)00565-1. PMid:14560266.

4. Kuroda S, Yamada K, Deguchi T, Hashimoto T, Kyung HM, Takano-Yamamoto T. Root proximity is a major factor for screw failure in orthodontic anchorage. Am J Orthod Dentofacial Orthop. 2007 Apr;131(4 Suppl):S68-73. http://dx.doi.org/10.1016/j.ajodo.2006.06.017. PMid:17448389.

5. Cheng SJ, Tseng IY, Lee JJ, Kok SH. A prospective study of the risk factors associated with failure of mini-implants used for orthodontic anchorage. Int J Oral Maxillofac Implants. 2004 Jan-Feb;19(1):100-6. PMid:14982362.

6. Williams KR, Edmundson JT. Orthodontic tooth movement analysed by the Finite Element Method. Biomaterials. 1984 Nov;5(6):347-51. http://dx.doi.org/10.1016/0142-9612(84)90033-4. PMid:6525394.

7. Lotti RS, Machado AW, Mazzieiro ET, Landre Júnior J. Aplicabilidade científica do método dos elementos finitos. Rev Dent Press Ortodon Ortop Facial. 2006 Mar-Apr;11(2):35-43. http://dx.doi.org/10.1590/S1415-54192006000200006.

8. Middleton J, Jones ML, Wilson AN. Three-dimensional analysis of orthodontic tooth movement. J Biomed Eng. 1990 July;12(4):319-27. http://dx.doi.org/10.1016/0141-5425(90)90007-A. PMid:2395358.

9. Rubin C, Krishnamurthy N, Capilouto E, Yi H. Stress analysis of the human tooth using a three-dimensional finite element model. J Dent Res. 1983 Feb;62(2):82-6. http://dx.doi.org/10.1177/00220345830620021701. PMid:6571871.

10. Chatzigianni A, Keilig L, Duschner H, Götz H, Eliades T, Bourauel C. Comparative analysis of numerical and experimental data of orthodontic mini-implants. Eur J Orthod. 2011 Oct;33(5):468-75. http://dx.doi.org/10.1093/ejo/cjr097. PMid:21852288.

11. Yu W, Park HS, Kyung HM, Kwon OW. Dynamic simulation of the self-tapping insertion process of orthodontic microimplants into cortical bone with a 3-dimensional finite element method. Am J Orthod Dentofacial Orthop. 2012 Dec;142(6):834-41. http://dx.doi.org/10.1016/j.ajodo.2012.08.016. PMid:23195369.

12. Motoyoshi M, Inaba M, Ono A, Ueno S, Shimizu N. The effect of cortical bone thickness on the stability of orthodontic mini-implants and on the stress distribution in surrounding bone. Int J Oral Maxillofac Surg. 2009 Jan;38(1):13-8. http://dx.doi.org/10.1016/j.ijom.2008.09.006. PMid:18963818.

13. Lombardo L, Gracco A, Zampini F, Stefanoni F, Mollica F. Optimal palatal configuration for miniscrew applications. Angle Orthod. 2010 Jan;80(1):145-52. http://dx.doi.org/10.2319/122908-662.1. PMid:19852654.

14. Holberg C, Winterhalder P, Rudzki-Janson I, Wichelhaus A. Finite element analysis of mono- and bicortical mini-implant stability. Eur J Orthod. 2014 Oct;36(5):550-6. http://dx.doi.org/10.1093/ejo/cjt023. PMid:23598610.

15. Singh S, Mogra S, Shetty VS, Shetty S, Philip P. Three-dimensional finite element analysis of strength, stability, and stress distribution in orthodontic anchorage: a conical, self-drilling miniscrew implant system. Am J Orthod Dentofacial Orthop. 2012 Mar;141(3):327-36. http://dx.doi.org/10.1016/j.ajodo.2011.07.022. PMid:22381493.

16. Chang JZ, Chen YJ, Tung YY, Chiang YY, Lai EH, Chen WP, et al. Effects of thread depth, taper shape, and taper length on the mechanical properties of mini-implants. Am J Orthod Dentofacial Orthop. 2012 Mar;141(3):279-88. http://dx.doi.org/10.1016/j.ajodo.2011.09.008. PMid:22381488.

17. Luiz NE, Jacomini A Fo, Lima LAC, Ciuccio RL, Soares MAD, Coutinho LL. Optimization design of orthodontic screws aiming at increasing the mechanical strength. Innov. Implant. J., Biomater. Esthet. 2010 Aug;5(2): 30-34.

18. Marcé-Nogué J, Walter A, Gil L, Puigdollers A. Finite element comparison of 10 orthodontic microscrews with different cortical bone parameters. Int J Oral Maxillofac Implants. 2013 July-Aug;28(4):e177-89. http://dx.doi.org/10.11607/jomi.2447. PMid:23869375.

19. Motoyoshi M, Inaba M, Ueno S, Shimizu N. Mechanical anisotropy of orthodontic mini-implants. Int J Oral Maxillofac Surg. 2009 Sept;38(9):972-7. http://dx.doi.org/10.1016/j.ijom.2009.05.009. PMid:19559569.

20. Meijer HJ, Starmans FJ, Steen WH, Bosman F. A three-dimensional, finite-element analysis of bone around dental implants in an edentulous human mandible. Arch Oral Biol. 1993 June;38(6):491-6. http://dx.doi.org/10.1016/0003-9969(93)90185-O. PMid:8343071.

21. Menicucci G, Mossolov A, Mozzati M, Lorenzetti M, Preti G. Tooth-implant connection: some biomechanical aspects based on finite element analyses. Clin Oral Implants Res. 2002 June;13(3):334-41. http://dx.doi.org/10.1034/j.1600-0501.2002.130315.x. PMid:12010166.

22. American Society for Metals. Metals Handbook. 10th ed. Metals Park: ASM; 1990. Vol. 2, Properties and selection: nonferrous alloys and special-purpose materials.

23. American Society for Metals. Metals Handbook. 9th ed. Metals Park: ASM; 1980. Vol. 3, Properties and selection: stainless steels, tool materials and special-purpose metals.

24. Holt JM, Mindlin H, Ho CY, editors. Structural alloys handbook. West Lafayette: CINDAS/Purdue University; 1996.

25. Lin TS, Tsai FD, Chen CY, Lin LW. Factorial analysis of variables affecting bone stress adjacent to the orthodontic anchorage mini-implant with finite element analysis. Am J Orthod Dentofacial Orthop. 2013 Feb;143(2):182-9. http://dx.doi.org/10.1016/j.ajodo.2012.09.012. PMid:23374924.

26. Chen Y, Kyung HM, Gao L, Yu WJ, Bae EJ, Kim SM. Mechanical properties of self-drilling orthodontic micro-implants with different diameters. Angle Orthod. 2010 Sept;80(5):821-7. http://dx.doi.org/10.2319/103009-607.1. PMid:20578851.

27. Suzuki EY, Suzuki B. Placement and removal torque values of orthodontic miniscrew implants. Am J Orthod Dentofacial Orthop. 2011 May;139(5):669-78. http://dx.doi.org/10.1016/j.ajodo.2010.11.017. PMid:21536211.

28. Kravitz ND, Kusnoto B. Risks and complications of orthodontic miniscrews. Am J Orthod Dentofacial Orthop. 2007 Apr;131(4 Suppl):S43-51. http://dx.doi.org/10.1016/j.ajodo.2006.04.027. PMid:17448385.

29. Büchter A, Wiechmann D, Koerdt S, Wiesmann HP, Piffko J, Meyer U. Load-related implant reaction of mini-implants used for orthodontic anchorage. Clin Oral Implants Res. 2005 Aug;16(4):473-9. http://dx.doi.org/10.1111/j.1600-0501.2005.01149.x. PMid:16117773.

30. Lee J, Kim JY, Choi YJ, Kim KH, Chung CJ. Effects of placement angle and direction of orthopedic force application on the stability of orthodontic miniscrews. Angle Orthod. 2013 July;83(4):667-73. http://dx.doi.org/10.2319/090112-703.1. PMid:23241005.

588019d97f8c9d0a098b5380 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections