Revista de Odontologia da UNESP
https://revodontolunesp.com.br/journal/rou/article/588018fd7f8c9d0a098b4efe
Revista de Odontologia da UNESP
Original Article

Ex-vivo radiographic characterization of biomaterials used for bone regeneration in pig jaws

Caracterização radiográfica ex vivo de biomateriais utilizados para regeneração óssea em mandíbulas de porcos

Corbi, Sâmara Cruz Tfaile; Spin-Neto, Rubens; Marcantonio Junior, Elcio; Marcantonio, Rosemary Adriana Chiérici

Downloads: 1
Views: 1032

Abstract

The radiographic characteristics of a biomaterial, such as its density, may influence the evaluation of the results obtained following its clinical use. Objective: The aim of this study was to evaluate the radiographic density of biomaterials used as bone substitutes, inserted into dental sockets and bone defects in created in the jaws of pigs. The influence of a soft tissue simulator on the results was also evaluated. Material and method: Two and three-millimeter-deep bone defects were created in the pigs mandible and the right first molar extraction socket were used. Commercial samples of five biomaterials were tested: Hydroxyapatite, Lyophilized Bovine Bone, 45S5 bioglass (generic), PerioGlass and β-Tri-Calcium Phosphate, and compared to a positive (mandibular bone) and negative (empty alveolar bone defects) controls. Radiographic images were acquired with and without a 10 mm thick soft-tissue simulator. Result: The results for the extraction sockets showed no differences between the biomaterials and the negative control. For the bone defects, the depth of the defect density influenced the density, both in the negative control (p < 0.01) and biomaterials (p < 0.05) groups. The soft- tissue simulator did not alter the results. Conclusion: The type of the evaluated defect can interfere in the radiographic features presented by each biomaterial, while the simulation of soft tissues was not statistically significant.

Keywords

Bone alveolus, bone defect, biomaterials, radiography, bone density, pigs.

Resumo

As características radiográficas, como a densidade, podem influenciar na avaliação dos resultados obtidos com a utilização de biomateriais. Objetivo: O objetivo deste estudo foi avaliar a densidade radiográfica de diferentes biomateriais substitutos ósseos, inseridos em alvéolos dentários e defeitos ósseos, em mandíbulas de porcos, além de verificar a influência de simulador de tecido mole. Material e método: Foram obtidos os defeitos: defeitos ósseos de 2 e 3 mm de profundidade no ramo da mandíbula, e alvéolos originados da extração dos primeiros molares direitos. Foram utilizadas amostras comerciais de cinco diferentes tipos de biomateriais, todos granulados: Hidroxiapatita, Osso Bovino Liofilizado, Biovidro 45S5 (genérico), PerioGlass e β-Fosfato Tri-Cálcio, que foram comparados com controle positivo (região óssea mandibular sem defeito) e controles negativos (defeitos ósseos e alvéolos vazios). Tomadas radiográficas foram realizadas com e sem simulador de tecido de 10 mm de espessura. Resultado: Os resultados obtidos nos alvéolos não demonstraram diferenças entre o controle negativo e os biomateriais avaliados. Nos defeitos ósseos, a profundidade do defeito mostrou influenciar a densidade tanto nos grupos controle negativo (p < 0,01) como nos grupos de biomateriais (p < 0,05). O simulador de tecidos moles não alterou os resultados. Conclusão: Pode-se concluir que os tipos de defeitos avaliados podem interferir nas características radiográficas apresentadas pelo biomaterial, enquanto que a simulação de tecidos moles não se mostrou relevante estatisticamente.

Palavras-chave

Alvéolo ósseo, defeito ósseo, biomateriais, radiografia, densidade óssea, porcos.

References



1. Legeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Rel Res.2002;395:81‑98. PMid:11937868. http://dx.doi.org/10.1097/00003086‑200202000-00009

2. Habibovic P, de Groot K. Osteoinductive biomaterials‑properties and relevance in bone repair. J Tissue Eng Regen Med.2007;1:25-32. PMid:18038389. http://dx.doi.org/10.1002/term.5

3. Fernández-Tresguerres-Hernández-Gil, I, Alobera-Gracia MA, del-Canto-Pingarrón M, Blanco-Jerez L. Physiological bases of bone regeneration II. The remodeling process. Med Oral Patol Oral Cir Bucal.2006;11:151-7.

4. Schmitt JM, Buck DC, Joh SP, Lynch SE, Holinger JO. Comparison of porous bone mineral and biologically active glass in critical-sized defects. J Periodontol.1997;69:1312-4.

5. Schepers E, de Clercq M, Ducheyne P, Kempeneers R. Bioactive glass particulate material as a filler for bone lesions. J Oral Rehabil.1991;18:439-52. http://dx.doi.org/10.1111/j.1365-2842.1991.tb01689.x

6. Strnad Z. Role of glass phase in bioactive glass-ceramics. Biomaterials.1992;13:317-21. http://dx.doi.org/10.1016/0142‑9612(92)90056-T

7. Gough JE, Jones JR, Hench LL. Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold. Biomaterials.2004;25:2039-46. PMid:14741618. http://dx.doi.org/10.1016/j.biomaterials.2003.07.001

8. Liu X, Ding C, Chu PK. Mechanism of apatite formation on wollastonite coating in simulated body fluids. Biomaterials.2004;25:1755-66. PMid:14738838. http://dx.doi.org/10.1016/j.biomaterials.2003.08.024

9. Mainard D, Galois L, Cohen P, Pfeffer F, Traversari R, Delagoutte JP. Filling of bone defects with tricalcium phosphate beta in traumatology. Ann Chir. 2000;125: 972-81. PMid:11195928.

10. Spin-Neto R, Schwartz-Filho HO, Marcantonio Jr E, Marcantonio RAC. Terapêutica periodontal regenerativa: técnicas cirúrgicas, biomateriais e fatores de crescimento transformando o periodontista em engenheiro tecidual. In: Tunes UR, Dourado M, Bittencourt S, organizadores. Avanços em periodontia e implantodontia - paradigmas e desafios. Nova Odessa: Editora Napoleão; 2011. p. 560-77.

11. Wenzel A, Haiter-Neto F, Gotfredsen E. Influence of spatial resolution and bit depth on detection of small caries lesions with digital receptors. Oral Surg Oral Med Oral Pathol Oral Radiol Endod.2007;103:418-22. PMid:17321456. http://dx.doi.org/10.1016/j.tripleo.2006.05.016

12. Zhang J, Xu Q, Huang C, Mo A, Li J, Zuo Y. Biological properties of an anti-bacterial membrane for guided bone regeneration: an experimental study in rats. Clin Oral Implants Res.2010;21:321-7. PMid:20074245. http://dx.doi.org/10.1111/j.1600-0501.2009.01838.x

13. Spin-Neto R, Stavropoulos A, Pereira LA, Marcantonio E Jr, Wenzel A. Fate of autologous and fresh-frozen allogeneic block bone grafts used for ridge augmentation. A CBCT‑based analysis. Clin Oral Implants Res. 2011 Oct 21. doi: 10.1111/j.1600-0501.2011.02324.x. PMid:22093001. http://dx.doi.org/10.1111/j.1600-0501.2011.02324.x

14. Batittucci, RG. Influência dos simuladores de tecidos moles na densidade óssea e dentária por meio de duas análises radiográficas: subtração digital e intensidade de pixel [exame de qualificação geral – doutorado]. Araraquara. Faculdade de Odontologia da UNESP; 2011.

15. Spin-Neto R, Belluci MM, Sakakura CE, Scaf G, Pepato MT, Marcantonio E Jr. Homeopathic Symphytum officinale increases removal torque and radiographic bone density around titanium implants in rats. Homeopathy.2010;99:249-54. PMid:20970094. http://dx.doi.org/10.1016/j.homp.2010.08.002

16. Selvig KA, Kersten BG, Wikesjö UM. Surgical treatment of intrabony periodontal defects using expanded polytetrafluoroethylene barrier membranes: influence of defect configuration on healing responses. J Periodontol.1993;64:730-3. PMid:8410612. http://dx.doi.org/10.1902/jop.1993.64.8.730

17. Tonetti M, Pini Prato G, Cortellini P. Periodontal regeneration of human infrabony defects. IV. Determinants of healing response. J Periodontol.1993;64:934-40. PMid:8277400. http://dx.doi.org/10.1902/jop.1993.64.10.934

18. Petri WHIII, Wilson TM. Clinical evaluation of antibiotic- supplemented bone allograft. J Oral Maxillofac Surg.1993;51:982-5. http://dx.doi.org/10.1016/S0278‑2391(10)80039-4

19. Plotnick IJ, Beresin VE, Simkins AB. A technique for standardized serial dental radiographs. J Periodontol. 1971;42:297-9. PMid:5280502.

20. Hausmann E, Allen K, Christersson L, Genco RJ. Effect of x-ray beam vertical angulation on radiograph alveolar crest level measurement. J Periodontal Res.1989;24:8-19. PMid:2524574. http://dx.doi.org/10.1111/j.1600-0765.1989.tb00852.x

21. Corbi SCT, Spin-Neto R, Marcantonio E Jr., Marcantonio RAC. Physical and radiographic evaluation of biomaterials used for bone regeneration. Rev Odontol UNESP.2010;39:101-7.

22. Weiss P, Layrolle P, Clergeau LP, Enckel B, Pilet P, Amouriq Y, et al. The safety and efficacy of an injectable bone substitute in dental sockets demonstrated in a human clinical trial. Biomaterials.2007;28:3295-305. PMid:17466366. http://dx.doi.org/10.1016/j.biomaterials.2007.04.006

23. Pripatnanont P, Nuntanaranont T, Vongvatcharanon S. Proportion of deproteinized bovine bone and autogenous bone affects bone formation in the treatment of calvarial defects in rabbits. Int J Oral Maxillofac Surg.2009;38:356-62. PMid:19278833. http://dx.doi.org/10.1016/j.ijom.2009.02.015

24. Fabbri M, Celotti GC, Ravaglioli A. Granulates based on calcium phosphate with controlled morphology and porosity for medical applications: physico-chemical parameters and production technique. Biomaterials.1994;15:474-7. http://dx.doi.org/10.1016/0142-9612(94)90228-3

25. Ann W, Francisco HN, Erik G. Influence of spatial resolution and bit depth on detection of small caries lesions with digital receptors. Oral Surg Oral Med Oral Pathol Oral Radiol Endod.2007;103:418-22. PMid:17321456. http://dx.doi.org/10.1016/j.tripleo.2006.05.016

26. Strebel J, Ender A, Paqué F, Krähenmann M, Attin T, Schmidlin PR. In vivo validation of a three-dimensional optical method to document volumetric soft tissue changes of the interdental papilla. J Periodontol.2009;80:56-61. PMid:19228090. http://dx.doi.org/10.1902/jop.2009.080288

27. Moskow BS, Lubarr A. Histological assessment of human periodontal defect after durapatite ceramic implant: report of case. J Periodontol.1983;54:455-62. PMid:6312010. http://dx.doi.org/10.1902/jop.1983.54.8.455

28. Callan DP, Rohrer M. D. Use of bovine-derived hydroxyapatite in the treatmentof edentulous ridge defects: a human clinical and histologic case report. J. Periodontol.1993;64:575-82. PMid:8393110. http://dx.doi.org/10.1902/jop.1993.64.6.575

29. Furusawa T, Mizunuma K. Osteoconductive properties and efficacy of resorbable bioactive glass as a bone grafting material. Implant Dent.1997;6:93-101. PMid:9545926. http://dx.doi.org/10.1097/00008505-199700620-00003
588018fd7f8c9d0a098b4efe rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections