Revista de Odontologia da UNESP
https://revodontolunesp.com.br/journal/rou/article/588018ad7f8c9d0a098b4d73
Revista de Odontologia da UNESP
Original Article

Physical and radiographic evaluation of biomaterials used for bone regeneration

Avaliação física e radiográfica de biomateriais usados para regeneração óssea

Corbi, Sâmara Cruz Tfaile; Spin-Neto, Rubens; Marcantonio Jr, Elcio; Marcantonio, Rosemary Adriana Chiérici

Downloads: 2
Views: 1003

Abstract

The search for new alternatives used in bone regeneration pushes the biomaterials’ development, and characteristics such as form, superficial roughness and size, allied to the radiographic bone density of those biomaterials can influence their clinical use. The objective of this study was to evaluate the shape, the size, the superficial aspects and the radiographic density of some of the most used bone-regenerating biomaterials grains. Radiographic results showed that all evaluated biomaterials had statistically equal radiographic densities, but all of them were higher than the radiographic bone density of rats calvaria, which is the region normally used for its test. On the physical analysis, β-TCP and HAP showed the higher superficial roughness, while the grains’ diameter and area showed heterogeneous results, with the lyophilized bovine bone showing the higher measures. Based on the results, it is concluded that the tested biomaterials presented higher radiographic density than the region where they are normally applied, and that significant differences in the shape, size and surface roughness could be seen, characteristics which can interfere in their clinical performance.

Keywords

Biomaterials, bone grafts, physical characteristics, radiographic evaluation.

Resumo

A busca por novos materiais para regeneração óssea incentiva o estudo dos biomateriais e sabe-se que suas características físicas, como forma, aspecto superficial e área, bem como as radiográficas, principalmente a densidade, podem influenciar nos resultados obtidos quando de sua utilização clínica. O objetivo deste estudo foi avaliar, o tamanho, a forma, o aspecto superficial e a densidade radiográfica de grânulos de alguns dos principais biomateriais utilizados para regeneração óssea. Os dados obtidos foram analisados estatisticamente permitindo a detecção das diferenças entre os biomateriais testados. Os resultados radiográficos mostraram que todos os biomateriais avaliados apresentaram densidades radiográficas estatisticamente iguais, porém maiores do que a densidade radiográfica do tecido ósseo da calvária de ratos, região normalmente usada para seu teste. Nas análises físicas, o βTCP e a HAP apresentaram maior rugosidade superficial, enquanto que para os parâmetros diâmetro e área dos grânulos, os resultados foram heterogêneos, com o osso bovino liofilizado apresentando as maiores medidas. Baseado nos resultados obtidos pode-se concluir que os biomateriais testados apresentaram densidade radiográfica maior do que a região óssea aonde são normalmente implantados e diferenças significativas na forma, tamanho e rugosidade dos grânulos, características essas que podem estar diretamente relacionadas com o seu desempenho clínico.

Palavras-chave

Biomateriais, enxertos ósseos, características físicas, avaliação radiográfica.

References



1. Yamada Y, Ueda M, Naiki T, Nagasaka T. Tissue-engineered injectable bone regeneration for osseointegrated dental implants. Clin Oral Implants Res. 2004; 15: 589-97.

2. Buser D, Dahlin C, Schenk RK. Guided bone regeneration in implant dentistry. Chicago: Quintessence; 1994.

3. Summers BN, Eisenstein SM. Donor site pain from the ilium. A complication of lumbar spine fusion. J Bone Joint Surg Br. 1989; 71: 677‑80.

4. Gross JS. Bone grafting materials for dental applications: a practical guide. Compend Contin Educ Dent. 1997; 18: 1013-8, 20-2, 24, passim; quiz.

5. Spin-Neto R, de Freitas RM, Pavone C, Cardoso MB, Campana-Filho SP, Marcantonio RA, et al. Histological evaluation of chitosan-based biomaterials used for the correction of critical size defects in rat’s calvaria. J Biomed Mater Res A. 2010; 93: 107-14.

6. Evans EJ. Toxicity of hydroxyapatite in vitro: the effect of particle size. Biomaterials. 1991; 12: 574-6.

7. Frank RM, Klewansky P, Hemmerle J, Tenenbaum H. Ultrastructural demonstration of the importance of crystal size of bioceramic powders implanted into human periodontal lesions. J Clin Periodontol. 1991; 18: 669-80.

8. Wang JS, Goodman S, Aspenberg P. Bone formation in the presence of phagocytosable hydroxyapatite particles. Clin Orthop Relat Res.1994(304): 272-9.

9. Sampaio JEC. Efeito de polimento na superfície radicular após instrumentação manual. Análise de microscopia eletrônica de varredura. Revista Periodontia. 1998; 7: 6.

10. Weiss P, Layrolle P, Clergeau LP, Enckel B, Pilet P, Amouriq Y, et al. The safety and efficacy of an injectable bone substitute in dental sockets demonstrated in a human clinical trial. Biomaterials. 2007; 28: 3295-305.

11. Pripatnanont P, Nuntanaranont T, Vongvatcharanon S. Proportion of deproteinized bovine bone and autogenous bone affects bone formation in the treatment of calvarial defects in rabbits. Int J Oral Maxillofac Surg. 2009; 38: 356-62.

12. Fabbri M, Celotti GC, Ravaglioli A. Granulates based on calcium phosphate with controlled morphology and porosity for medical applications: physico-chemical parameters and production technique. Biomaterials.1994; 15: 474-7.

13. Shapoff CA, Bowers GM, Levy B, Mellonig JT, Yukna RA. The effect of particle size on the osteogenic activity of composite grafts of allogeneic freeze-dried bone and autogenous marrow. J Periodontol. 1980; 51: 625-30.

14. Zaner DJ, Yukna RA. Particle size of periodontal bone grafting materials. J Periodontol. 1984; 55: 406-9.

15. Ito G, Matsuda T, Inoue N, Kamegai T. A histological comparison of the tissue interface of bioglass and silica glass. J Biomed Mater Res. 1987; 21: 485-97.

16. Eggli PS, Muller W, Schenk RK. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clin Orthop Relat Res. 1988(232): 127-38.

17. Frayssinet P, Tourenne F, Primout I, Delga C, Sergent E, Besse C, et al. A study of structure and degradation of nonpolymeric biomaterials implanted in bone using reflected and transmitted light microscopy. Biotech Histochem. 1993; 68: 333-41.

18. Frayssinet P, Trouillet JL, Rouquet N, Azimus E, Autefage A. Osseointegration of macroporous calcium phosphate ceramics having a different chemical composition. Biomaterials.1993; 14: 423-9.

19. Gao TJ, Tuominen TK, Lindholm TS, Kommonen B, Lindholm TC. Morphological and biomechanical difference in healing in segmental tibial defects implanted with Biocoral or tricalcium phosphate cylinders. Biomaterials. 1997; 18: 219-23.

20. Yukna RA, Krauser JT, Callan DP, Evans GH, Cruz R, Martin M. Multi-center clinical comparison of combination anorganic bovine‑derived hydroxyapatite matrix (ABM)/cell binding peptide (P-15) and ABM in human periodontal osseous defects. 6-month results. J Periodontol. 2000; 71: 1671-9.

21. Yukna RA, Mellonig JT. Histologic evaluation of periodontal healing in humans following regenerative therapy with enamel matrix derivative. A 10-case series. J Periodontol. 2000; 71: 752-9.

22. Schepers EJ, Ducheyne P. Bioactive glass particles of narrow size range for the treatment of oral bone defects: a 1-24 month experiment with several materials and particle sizes and size ranges. J Oral Rehabil. 1997; 24: 171-81.

23. Wheeler DL, Stokes KE, Hoellrich RG, Chamberland DL, McLoughlin SW. Effect of bioactive glass particle size on osseous regeneration of cancellous defects. J Biomed Mater Res. 1998; 41: 527-33.

24. Felipe ME, Andrade PF, Novaes AB, Jr., Grisi MF, Souza SL, Taba M Jr, et al. Potential of bioactive glass particles of different size ranges to affect bone formation in interproximal periodontal defects in dogs. J Periodontol. 2009; 80: 808-15.

25. V Villaca JH, Novaes AB, Jr., Souza SL, Taba M Jr, Molina GO, Carvalho TL. Bioactive glass efficacy in the periodontal healing of intrabony defects in monkeys. Braz Dent J. 2005; 16: 67-74.

26. Eliaz N, Shmueli S, Shur I, Benayahu D, Aronov D, Rosenman G. The effect of surface treatment on the surface texture and contact angle of electrochemically deposited hydroxyapatite coating and on its interaction with bone-forming cells. Acta Biomater. 2009; 5: 3178-91.

27. Faeda RS, Tavares HS, Sartori R, Guastaldi AC, Marcantonio E Jr. Evaluation of titanium implants with surface modification by laser beam. Biomechanical study in rabbit tibias. Braz Oral Res. 2009; 23: 137-43.

28. Faeda RS, Tavares HS, Sartori R, Guastaldi AC, Marcantonio E Jr. Biological performance of chemical hydroxyapatite coating associated with implant surface modification by laser beam: biomechanical study in rabbit tibias. J Oral Maxillofac Surg. 2009; 67: 1706-15.

29. Meirelles L, Currie F, Jacobsson M, Albrektsson T, Wennerberg A. The effect of chemical and nanotopographical modifications on the early stages of osseointegration. Int J Oral Maxillofac Implants. 2008; 23: 641-7.

30. Yang GL, He FM, Zhao SS, Wang XX, Zhao SF. Effect of H2O2/HCl heat treatment of implants on in vivo peri-implant bone formation. Int J Oral Maxillofac Implants. 2008; 23: 1020-8.
588018ad7f8c9d0a098b4d73 rou Articles
Links & Downloads

Rev. odontol. UNESP

Share this page
Page Sections